Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:36:26.986Z Has data issue: false hasContentIssue false

Surface Morphology Investigation of Au and Pt Electroless Contact on ZnCdTe Crystal by Atomic Force Microscopy

Published online by Cambridge University Press:  26 February 2011

Zhiyu Hu
Affiliation:
Center for Photonic Materials and Devices,Department of Physics, Fisk University, Nashville, Tennessee 37208, U.S.A.
Zhihua Hu
Affiliation:
Center for Photonic Materials and Devices,Department of Physics, Fisk University, Nashville, Tennessee 37208, U.S.A.
K. T. Chen
Affiliation:
Center for Photonic Materials and Devices,Department of Physics, Fisk University, Nashville, Tennessee 37208, U.S.A.
M. A. George
Affiliation:
Center for Photonic Materials and Devices,Department of Physics, Fisk University, Nashville, Tennessee 37208, U.S.A.
A. Burger
Affiliation:
Center for Photonic Materials and Devices,Department of Physics, Fisk University, Nashville, Tennessee 37208, U.S.A.
W. E. Collins
Affiliation:
Center for Photonic Materials and Devices,Department of Physics, Fisk University, Nashville, Tennessee 37208, U.S.A.
Get access

Abstract

Gold and platinum metal contacts have been deposited on the cleaved and etched surfaces of ZnCdTe single crystals by “electroless” method from AuCl3, PtCl2 and PtCl4 aqueous solutions with different concentrations and deposition times. Atomic Force Microscopy (AFM) has been employed to reveal the surface morphology of metal contacts and it was found that for AuCl3 and PtCl2 solutions, the surface morphology and grain size are similar, and uniformly distributed. The surface morphology on contact made from PtCl4 shows a larger grain size, higher roughness and non-uniformity. The effect of different heat treatments to the surface morphology will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1). Khan, A. A., Allred, W. P., Dean, B., Hooper, S., Hawkey, J. E. and Johnson, C. J., J. Electron. Mater. 15 (1986) 181.Google Scholar
2). Reiskin, E. and Butler, J. F., IEEE Trans. Nucl. Sci. 35, (1988).Google Scholar
3). Butler, J. F., Lingren, C. L. and Doty, F. P., IEEE Trans. Nucl Sci., 39 (1992) 605.Google Scholar
4). Stausser, Y. E. and Heaton, M. G., American Lab., May (1994).Google Scholar
5). George, M. A., Collins, W. E., Chen, K. T., Hu, Zhiyu, Egarievwe, S. U. and Burger, A., J. Appl. Phys., Vol. 77, No. 6, 15 March (1995).Google Scholar
6). George, M. A., Azoulay, M., Jayatirtha, H. N., Burger, A., Collins, W. E. and Silbernam, E., Surface Science, 296 (1993) 231.Google Scholar
7). Azoulay, M., George, M. A., Burger, A., Collins, W. E. and Silberman, E., J. Vac. Sci. and Technol. B 11 (5) (1993) 1782.Google Scholar
8). Kroeger, F. A. and DeNobel, D., J. Electron. 1, (1955) 190.Google Scholar
9). Wald, F. V. and Bell, R. O., Contract AT (111) 3545, USAEC 1974.Google Scholar
10). Musa, A., Pompon, J. P., Grob, J. J., Hage-Ali, M., Stuck, R., and Siffert, P., J. Appl. Phys. 54 (6) (1983) 3260.Google Scholar
11). Touskova, J. and Kuzel, R., Phus. Status Solidi A10 (1972) 91.Google Scholar
12). Triboulet, R., Proc. 3rd Int. Conf. on CdTe, Siffert, P., Cornet, A. (eds.), Stransboug, 171, (1971).Google Scholar
13). Suita, M. and Taguchi, T., Nucl. Instr. Meth. in Phys. Res., A283 (1989) 268.Google Scholar
14). Patterson, M. H. and Williams, R. H., J. Phys. D: Appl. Phys. 11(1978) 183.Google Scholar
15). Aspnes, D. E. and Arwin, H., J. Vac. Sci. Technol. A 2 (3) (1984) 1309.Google Scholar
16). Ricco, A. J., White, H. S. and Wrighton, M.S., J. Vac. Sci. Technol., A2(2) (1984) 910.Google Scholar