Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T04:20:33.846Z Has data issue: false hasContentIssue false

Surface Interactions for Controlling the Microfluidic Separation of Polymeric Microspheres

Published online by Cambridge University Press:  25 October 2011

Alireza Sadeghi
Affiliation:
Chemical and Process Engineering Department, University of Sheffield, Sheffield S1 3JD
Jonathan Howse
Affiliation:
Chemical and Process Engineering Department, University of Sheffield, Sheffield S1 3JD
Steve Ebbens
Affiliation:
Chemical and Process Engineering Department, University of Sheffield, Sheffield S1 3JD
Bruno De Geest
Affiliation:
Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent
Get access

Abstract

Applications of self-assembled monolayers (SAMs) formed by the adsorption of alkanethiols onto gold surfaces have had a widespread growth in adhesion investigations, interfacial interaction investigations and other interfacial phenomena in recent years. As computational modelling showed that modified surfaces can segregate compliant microspheres, a microfluidic flow cell was designed to roll polymeric microcapsules on surfaces with different chemistries, in order to obtain experimental data to validate previous results. Particle image velocimetry showed that rolling speed of microcapsules is affected by surface chemistry. The velocity of vesicles rolling on thiol surfaces with positive of negative charged head groups was significantly lower than vesicles rolling on thiol surfaces with a hydrocarbon chain head group and pure gold surface respectively. Since fabrication of patterned SAMs with different thiol surfaces is possible through oxidation by UV light, our results point to a facile method for carrying out a continuous separation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lulevich, V. V.; Radtchenko, I. L.; Sukhorukov, G. B.; Vinogradova, O. I. Macromolecules 2003, 36, 2832.10.1021/ma0259719Google Scholar
[2] Huang, S.; Ingber, D. E. Cancer cell 2005, 8, 175.10.1016/j.ccr.2005.08.009Google Scholar
[3] Suresh, S. J. Mater. Res. 2006, 21, 1871.10.1557/jmr.2006.0260Google Scholar
[4] Suresh, S.; Spatz, J.; Mills, J. P.; Micoulet, A.; Dao, M.; Lim, C. T.; Beil, M.; Sefferlein, T. Acta Biomater. 2005, 1, 15.10.1016/j.actbio.2004.09.001Google Scholar
[5] Van Vliet, K. J.; Bao, G.; Suresh, S. Acta Mater. 2003, 51, 5881.10.1016/j.actamat.2003.09.001Google Scholar
[6] Fery, A.; Dubreuil, F.; Mohwald, H. New. J. Phys. 2004, 6, 18.10.1088/1367-2630/6/1/018Google Scholar
[7] Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.10.1126/science.284.5417.1143Google Scholar
[8] Shchukin, D. G.; Sukhorukov, G. B.; Mohwald, H. Angew. Chem., Int. Ed. 2003, 42, 4472.10.1002/anie.200352068Google Scholar
[9] Alexeev, A.; Verberg, R.; Balazs, A. C. Langmuir 2007, 23, 983.10.1021/la062914qGoogle Scholar
[10] Cao, H.; Tegenfeldt, J. O.; Austin, R.; Chou, S. Y. Appl. Phys. Lett. 2002, 81, 3058.10.1063/1.1515115Google Scholar
[11] Notsu, H.; Kubo, W.; Shitanda, I.; Tatsuma, T. J. Mater. Chem. 2005, 15, 1523.10.1039/b418884eGoogle Scholar
[12] Ito, Y.; Heydari, M.; Hashimoto, A.; Konno, T.; Hirasawa, A.; Hori, S.; Kuirta, K.; Nakajima, A. Langmuir 2007, 23, 1845.10.1021/la0624992Google Scholar
[13] Kraus, T.; Stutz, R.; Balmer, T. E.; Schmid, H.; Malaquin, L.; Spencer, N. D.; Wolh, H. Langmuir 2005, 21, 7796.10.1021/la0506527Google Scholar
[14] Choi, S. H.; Zhang-Newby, B. Langmuir 2003, 19, 7427.10.1021/la035027lGoogle Scholar
[15] Brewer, N. J.; Rawsterne, R. E.; Kothari, Sh.; Leggett, G. J. J. Am. Chem. Soc. 2001, 123, 4089.10.1021/ja0155074Google Scholar
[16] van Dijk-Wolthuis, W. N. E., Hoogeboom, J. A. M., van Steenbergen, M. J., Tsang, S. K. Y., Hennink, W. E., Macromolecules 1997, 30, 4639.10.1021/ma9704018Google Scholar
[17] Arys, X., Jonas, A. M., Laschewsky, A., Legras, R., in Supramolecular Polymers (Ed: Ciferri, A.), Marcel Dekker, New York 2000.Google Scholar
[18] Bertrand, P., Jonas, A., Laschewsky, A., Legras, R., Macromol. Rapid Commun. 2000, 21, 319.10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO;2-73.0.CO;2-7>Google Scholar
[19] Decher, G., Science 1997, 277, 1232.10.1126/science.277.5330.1232Google Scholar
[20] De Geest, Bruno G., McShane, Michael J., Demeester, Jo, De Smedt, Stefaan C., and Hennink, Wim E., J. Am. Chem. Soc., 2008, 130 (44), 1448014482 10.1021/ja806574hGoogle Scholar