No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
Cavitation effects have long been considered to be undesirable phenomena that resulted in the damage and failure of metallic components. In the present work, we establish that, in fact, controlled applications of ultrasonic cavitation phenomena can be used to enhance the surface properties of both ceramics and metals. Polished (100) surfaces of single-crystal MgO and single crystals of 70%Fe-15%Ni-15%Cr (stainless-steel) were subjected to ultrasonically induced cavitation by exposure to 20 kHz excitations (at ∼ 100 W/cm2) in isopropanol. Knoop micro-indentation hardness measurements on untreated and ultrasonically treated areas of the surfaces revealed a hardening that increased with the duration of the ultrasonic treatment up to a saturation level. Relative increases in the surface hardness of up to 30% in the case of MgO and ∼250% in the case of Fe-Ni-Cr were obtained. It was found that the rate of hardening was not uniform over the surface but was more rapid on those portions of the surface that were directly under the edge of the ultrasonically vibrating horn tip.