Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T04:20:51.287Z Has data issue: false hasContentIssue false

Surface Enhanced Raman Spectroscopy and Cyclic Voltammetry Studies of Ni-rich Oxide Nanowires as Electrode Materials

Published online by Cambridge University Press:  01 February 2011

Que Anh Nguyen
Affiliation:
[email protected], University of California, Berkeley, Materials Science & Engineering, 210 HMMB, Berkeley, CA, 94720, United States
Yash V. Bhargava
Affiliation:
[email protected], University of California, Materials Science & Engineering, Berkeley, CA, 94720, United States
Shawn A. Thorne
Affiliation:
[email protected], University of California, Materials Science & EngineeringBerkeley, CA, 94720, United States
Tzipi Cohen-Hyams
Affiliation:
[email protected], University of California, Materials Science & Engineering, Berkeley, CA, 94720, United States
Thomas M. Devine
Affiliation:
[email protected], University of California, Materials Science & Engineering, Berkeley, CA, 94720, United States
Get access

Abstract

A novel electrode material for Ni metal hydride batteries, composed of electrochemically synthesized, Ni-rich oxide nanowires, was investigated in this study. The nanowires, grown on Alloy 600 in a high-temperature, high-pressure aqueous electrolyte, are typically 25nm in diameter and 5-10um long. Cyclic voltammetry, with surface enhanced Raman spectroscopy (SERS) suggests that anodic polarization of the wires converts Ni2+ species to Ni3+, present as γ–-NiOOH, the chemical phase involved in the charge/discharge reaction in Ni-MH batteries. The reversibility of the reaction was confirmed via multiple polarization cycles and SEM imaging. In addition, the current density and polarization behavior of the nanowires in 0.01M KOH solution is compared to that of planar NiO and Alloy 600. Results suggest that the nanowires, due to their higher surface area, achieves at least 10 times the current density (for a given apparent area) of the non-nanowire samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tenne, R. Rao, C.N.R. Philos. Trans. R. Soc. London, Ser. A 362, 2090 (2004).Google Scholar
2 Klemic, J. F. Stern, E. Reed, M. A. Nat. Biotechnol. 19, 924 (2001).Google Scholar
3 Cui, Y. Wei, Q. Park, H. Lieber, C. M. Science 293, 1289 (2001).Google Scholar
4 Hahm, J. Lieber, C. M. Nano Letts. 4, 51 (2004).Google Scholar
5 Huang, M. H. Mao, S. Feick, H. Yan, H. Wu, Y. Kind, H. Weber, E. Russo, R. Yang, P. Science 292, 1897 (2001).Google Scholar
6 Tans, S. J. Verschueren, R. M. Dekker, C. Nature 393, 4952 (1998).Google Scholar
7 Law, M. Greene, L.E. Johnson, J.C. Saykally, R. Yang, P.. Nat. Mater. 4, 455 (2005).Google Scholar
8 Song, Q.S. Li, Y.Y. and Chan, S.L.I. J. Appl. Electrochem. 35, 157 (2005).Google Scholar
9 Kamath, P.V. and Subbanna, G.N. J. Appl. Electrochem. 22, 478 (1992).Google Scholar
10 Gille, G. Albrecht, S. Meese-Marktscheffel, J., Olbrich, A. and Schrumpf, F. Solid State Ionics 148, 269 (2002).Google Scholar
11 Bhargava, Y.V. Thorne, S.A. Mintz, T.S. Hyams, T.C. Radmilovic, V. Suzuki, Y. Devine, T. M. in Magnetic Nanoparticles and Nanowires, edited by Kumar, D. Kurihara, L., Boyd, I.W. Duscher, G. and Harris, V. (Mater. Res. Soc. Symp. Proc. 877E, Warrendale, PA, 2005), S7.4.1.Google Scholar
12 Mintz, T. S. Bhargava, Y. V. Thorne, S. A. Chopdekar, R. Radmilovic, V. Suzuki, Y. and Devine, T. M.. Electrochem. Solid-State Lett. 8, D26 (2005).Google Scholar
13 Johnson, C. Graves, P.R.. Appl. Spectrosc. 44, 105 (1990).Google Scholar
14 Cordoba-Torresi, S.I., goff, A. Hugot-Le, Joiret, S.. J. Electrochem. Soc. 138, 1155 (1991).Google Scholar
15 Moskovits, M.. Reviews of Modern Physics 57, 783 (1985).Google Scholar
16 Ferreira, M. G. S. Belo, M. Da Cunha, Hakiki, N. E. Goodlet, G. Montemor, M. F. Simões, A. M. P.. J. Braz. Chem. Soc. 13, 433 (2002).Google Scholar
17 Barnard, R. Randell, C.F. and Tye, F.L.. J. Appl. Electrochem. 10, 127 (1980).Google Scholar