Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:57:03.567Z Has data issue: false hasContentIssue false

Surface Engineered Porous Silicon-based Nanostructures for Cancer Therapy

Published online by Cambridge University Press:  16 March 2012

Adi Tzur-Balter
Affiliation:
The Interdepartmental Program of Biotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
Naama Massad-Ivanir
Affiliation:
Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Ester Segal
Affiliation:
Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
Get access

Abstract

In this work, nanostructured porous silicon (PSi) hosts, synthesized by electrochemical etching of Si, are designed to carry and release the anti cancer drug, mitoxantrone dihydrochloride (MTX). We study the effect of surface chemistry of the Si scaffold on its properties as a drug carrier. The freshly-etched PSi is modified by surface alkylation using thermal hydrosilylation with 1-dodecene. Fourier-transform infrared spectroscopy and nitrogen adsorption-desorption measurements are employed to characterize the PSi carriers after chemical modification. Both, drug loading efficiency and release kinetics are found to be significantly affected by surface chemistry of the PSi. In vitro cytotoxicity studies on human breast carcinoma (MDA-MB-231) cells show that the MTX released from the PSi hosts maintains its cytotoxic functionality.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bonanno, L. M. and Segal, E., Nanomedicine 6, 1755 (2011).Google Scholar
[2] Jane, A., Dronov, R., Hodges, A., and Voelcker, N. H., Trends Biotechnology 27, 230 (2009).Google Scholar
[3] Massad-Ivanir, N., Shtenberg, G., Tzur, A., Krepker, M. A., and Segal, E., Analytical Chemistry 83, 3282 (2011).Google Scholar
[4] Coffer, J. L., Whitehead, M. A., Nagesha, D. K., Mukherjee, P., Akkaraju, G., Totolici, M., Saffie, R. S., and Canham, L. T., Physica Status Solidi a-Applied Research 202, 1451 (2005).Google Scholar
[5] Anglin, E. J., Cheng, L., Freeman, W. R., and Sailor, M. J., Advanced Drug Delivery Reviews 60, 1266 (2008).Google Scholar
[6] Canham, L. T., Stewart, M. P., Buriak, J. M., Reeves, C. L., Anderson, M., Squire, E. K., Allcock, P., and Snow, P. A., Physica Status Solidi a-Applied Research 182, 521 (2000).Google Scholar
[7] Godin, B., Gu, J. H., Serda, R. E., Bhavane, R., Tasciotti, E., Chiappini, C., Liu, X. W., Tanaka, T., Decuzzi, P., and Ferrari, M., Journal of Biomedical Materials Research Part A 94A, 1236 (2010).Google Scholar
[8] Salonen, J., Kaukonen, A. M., Hirvonen, J., and Lehto, V. P., Journal of Pharmaceutical Sciences 97, 632 (2008).Google Scholar
[9] pSivida.com.Google Scholar
[10] Canham, L. T., Advanced Materials 7, 1033 (1995).Google Scholar
[11] Foraker, A. B., Walczak, R. J., Cohen, M. H., Boiarski, T. A., Grove, C. F., and Swaan, P. W., Pharmaceutical Research 20, 110 (2003).Google Scholar
[12] Jarvis, K. L., Barnes, T. J., Badalyan, A., Pendleton, P., and Prestidge, C. A., Journal of Physical Chemistry C 112, 9717 (2008).Google Scholar
[13] Alvarez, S. D., Derfus, A. M., Schwartz, M. P., Bhatia, S. N., and Sailor, M. J., Biomaterials 30, 26 (2009).Google Scholar
[14] Santos, H. A., Riikonen, J., Salonen, J., Makila, E., Heikkila, T., Laaksonen, T., Peltonen, L., Lehto, V.-P., and Hirvonen, J., Acta Biomaterialia 6, 2721 (2010).Google Scholar