No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
Anodic oxide passivation of p-type HgCdTe generates an inversion layer. Extremely high Hall mobility data for electrons in this layer indicated the presence of a two-dimensional electron gas. This is verified by use of the Shubnikov-de Haas effect from 1.45-4.15K. Data is extracted utilizing a numerical second derivative of DC measurement. Three sub-bands are detected. Their relative occupancies are in excellent agreement with theory and with experimental results obtained on anodic oxide as accumulation layers of n-type HgCdTe. The effective mass derived is comparable to expected.