Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:12:24.975Z Has data issue: false hasContentIssue false

Surface damage effects on secondary electron emission From the negative electron affinity diamond surface

Published online by Cambridge University Press:  10 February 2011

D. P. Malta
Affiliation:
Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709
J. B. Posthill
Affiliation:
Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709
T. P. Humphreys
Affiliation:
Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709
M. J. Mantini
Affiliation:
Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709
R. J. Markunas
Affiliation:
Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709
Get access

Abstract

The effects of surface damage on the secondary electron emission characteristics of a natural diamond (100) surface have been investigated using ultraviolet photoelectron spectroscopy and scanning electron microscopy. Surface damage was intentionally induced by abrading the (100) diamond face with diamond paste. Removal of the damage was achieved by a sequence of ion implantation, graphitization, electrochemical etching and oxygen/argon plasma etching. Prior to characterization performed between steps in the sequence, the surface was hydrogenated by exposure to a hydrogen plasma in attempts to create a negative electron affinity surface condition. Upon removal of the surface damage, the secondary electron yield from the negative electron affinity surface was enhanced by a factor of ˜20 over that from the damaged negative electron affinity surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, R. E., Humphreys, T. P., Pettenkoffer, C., Malta, D. P., Posthill, J. B., Mantini, M. J., Rudder, R. A., Hudson, G. C. and Markunas, R. J., this proceedings.Google Scholar
2. Himpsel, F. J., Knapp, J. A., van Vechten, J. A. and Eastman, D. E., Phys.Rev. B 20, 624 (1979).Google Scholar
3. Pate, B. B., Hecht, M.H., Binns, C., Lindau, I. and Spicer, W.E., J. Vac. Sci. Technology. 21, 268 (1982).Google Scholar
4. van der Weide, J. and Nemanich, R. J., J. Vac. Sci. Technol. B., Vol.10, 1940 (1992).Google Scholar
5. Malta, D. P., Posthill, J. B., Humphreys, T. P., Thomas, R. E., Fountain, G. G., Rudder, R. A., Hudson, G. C., Mantini, M. J., and Markunas, R. J., Appl. Phys. Lett. 64, 1929 (1994).Google Scholar
6. Humphreys, T. P., Thomas, R. E., Malta, D. P., Posthill, J. B., Mantini, M. J., Rudder, R. A., Hudson, G. C. and Markunas, R. J., submitted to Appl. Phys. Lett., May 1994 Google Scholar
7. Malta, D. P., Posthill, J. B., Humphreys, T. P., Thomas, R. E., Fountain, G. G., Rudder, R. A., Hudson, G. C., Mantini, M. J. and Markunas, R. J., Mat. Res. Soc. Proc 339, 39 (1994).Google Scholar
8. Marchywka, M., Pehrsson, P. E., Binari, S. C., and Moses, D., J. Electrochemical Soc. 140, L19 (1993).Google Scholar
9. For a complete review, see Seiler, H., J. Appl. Phys. 54 R 1 (1983)Google Scholar
10. Joy, D. C., ”A Data Base on Electron-Solid Interactions”, unpublished document.Google Scholar
11. Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L, J. Appl. Phys., 78, 2707 (1995)Google Scholar