Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T23:51:41.140Z Has data issue: false hasContentIssue false

Surface Chemistry of CVD Diamond: Linking the Nanoscale and Mesoscale Modelling Hierarchies

Published online by Cambridge University Press:  10 February 2011

A.P. Sutton
Affiliation:
Department of Materials, University of Oxford, Parks Rd, Oxford OX1 3PH, UK
C.C. Battaile
Affiliation:
Sandia National Laboratories, Albuquerque, NM
D.J. Srolovitz
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI
J.E. Butler
Affiliation:
Gas/Surface Dynamics Section, Naval Research Laboratory, Washington, DC
Get access

Abstract

The β-scission growth mechanism at the diamond (100) (2×1) surface is studied by a combination of nanoscale ab-initio LDA/GGA and semiempirical tight-binding techniques to provide the necessary input into the mesoscale variable time step Kinetic Monte-Carlo (KMC) simulations of CVD diamond growth. The reaction path of the beta-scission reaction is critically examined and the activation barrier of the reverse etching of the methylene adsorbate is deduced. Our quantum mechanical calculations support a previous semiempirical PM3 study confirming that the molecular mechanics values for the entalphy of the reaction are a factor of 2 wrong. This conclusion provides strong support for the preferential etching mechanism introduced into KMC to predict experimentally measured growth rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Diamond Films: Recent Developments, edited by Gruen, D.M and Buckley-Golder, I., MRS Bulletin 23, (9) (1998).Google Scholar
[2] Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G. and Bigelow, L.K. (Mracel Dekker Inc., New York, 1998) p. 527.Google Scholar
[3] Goodwin, D.G. and Butler, J.E., in Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G. and Bigelow, L.K. (Mracel Dekker Inc., New York, 1998).Google Scholar
[4] D'Evelyn, M.P., in Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G. and Bigelow, L.K. (Mracel Dekker Inc., New York, 1998) p. 89.Google Scholar
[5] Frenklach, M. and Skokov, S., J. Phys. Chem. B 101, 3025 (1997).Google Scholar
[6] Battaile, C.C., Atomic-scale Kinetic Monte Carlo Simulations of Diamond Chemical Vapor Deposition, PhD thesis, University of Michigan, 1998.Google Scholar
[7] Battaile, C.C., Srolovitz, D.J. and Butler, J.E., J. Appl. Phys. 82, 6293 (1997).Google Scholar
[8] Srolovitz, D.J., Dandy, D.S., Butler, J.E., Battaile, C.C. and , Paritosh, JOM 49, 42 (1997).Google Scholar
[9] Frenklach, M., J. Chem. Phys. 97, 5794 (1992).Google Scholar
[10] Bortz, A.B., Kalos, M.H. and Ledowitz, J.L., J. Comp. Phys 17, 10 (1975).Google Scholar
[11] Harris, S.J. and Goodwin, D.G., J. Phys. Chem. 97, 23 (1993).Google Scholar
[12] Kuang, Y., Wang, Y., Lee, N., Badzian, A., Badzian, T. and Tsong, T.T., Appl. Phys. Lett. 67, 3721 (1995).Google Scholar
[13] Thorns, B.D. and Butler, J.E., Surf. Sci. 328, 291 (1995).Google Scholar
[14] Sasaki, H., Aoki, M. and Kawarada, H., Diam. Rel. Mater. 2, 1271 (1993).Google Scholar
[15] Scheiner, A.C., Baker, J. and Andzelm, J.W., J. Comput. Chem. 18, 775 (1997).Google Scholar
[16] Xu, C.H., Wang, C.Z., Chan, C.T. and Ho, K.M., J. Phys. Condens. Matter 4, 6047 (1992).Google Scholar
[17] Davidson, B.N. and Pickett, W.E., Phys. Rev. B 49, 11253 (1994).Google Scholar
[18] Horsfield, A.P., Goodwin, P.D., Pettifor, D.G. and Sutton, A.P., Phys. Rev. B 54, 15773 (1996).Google Scholar
[19] Sutton, A.P., Finnis, M.W., Pettifor, D.G. and Ohta, Y., J. Phys C 21, 35 (1988).Google Scholar
[20] Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
[21] Becke, A.D., J. Chem. Phys. 88, 2547 (1988).Google Scholar
[22] Garrison, B.J, Dawnkaski, E.J., Strivastava, D. and Brenner, D.W., Science 225, 835 (1992).Google Scholar
[23] Musgrave, C.B., Harris, S.J., Goddard, W.A., Chem. Phys. Lett. 247, 359 (1995).Google Scholar
[24] Skokov, S., Weiner, B. and Frenklach, M., J. Phys. Chem. 98, 8 (1994).Google Scholar