Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T09:36:53.696Z Has data issue: false hasContentIssue false

Surface Chemical Analysis of Nanoparticles for Commercial Products and Devices

Published online by Cambridge University Press:  21 February 2013

Marie-Isabelle Baraton*
Affiliation:
Centre Européen de la Céramique, University Limoges & CNRS, Limoges, France
Get access

Abstract

Amongst the list of the measurands specific to nanoparticles, size and shape definitely matter but surface chemistry is also often cited. While it is now largely recognized that surface composition, structure and reactivity are perhaps the dominant parameters controlling properties of nanoparticles, surface chemistry is one of the key characteristics of nanoparticles which is seldom or inappropriately evaluated, as it has been identified by international organizations (such as ISO, BIPM or CEN). The usual techniques for surface analysis of materials often require ultra-high vacuum (UHV) conditions and are hardly applicable to nanoparticles. Moreover, because the surface chemical composition and reactivity are dependent on the environmental conditions, the results obtained under UHV cannot be extrapolated to nanoparticles in ambient atmosphere or dispersed in liquids.

After an analysis of the stakes and challenges in the surface characterization of nanoparticles and a very brief overview of the usual techniques for surface studies, this paper presents the performance of Fourier transform infrared (FTIR) spectroscopy to investigate surface chemical composition, surface reactivity and surface functionalization of nanoparticles. As illustrating examples, the results of the FTIR surface analysis of different kinds of ceramic nanoparticles are discussed with regard to several fields of applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pendrill, L., Flys, O., Dirscherl, K., and Roebben, G., European Consultation on Metrological Traceability, Standards and Dissemination of Metrology in Industrial Nanotechnology, Co-Nanomet Report, December 2010, http://www.co-nanomet.eu/ (accessed on October 31, 2012).Google Scholar
Grainger, D.W. and Castner, D.G., Adv. Mater. 20, 867 (2008).CrossRefGoogle Scholar
Nanotechnology: A Realistic Market Assessment, BCC Research Report, September 2012, http://www.bccresearch.com/report/nanotechnology-market-applications-products-nan031e.html (accessed on October 31, 2012).Google Scholar
Opportunities and Risks of Nanotechnologies, Allianz Report in co-operation with the OECD International Futures Program, 2006, http://www.oecd.org/dataoecd/32/1/44108334.pdf (accessed on May 14, 2012).Google Scholar
Seeing more clearly at the nanoscale, Technology Advances, Mater. Res. Soc. Bull. 36, 855 (2011).Google Scholar
European Workshop on Critical Dimensions, Scanning Probe Techniques and Thin Film Metrology Proc. Co-Nanomet Workshop, Brno (Czech Republic), October 2010, http://www.euspen.eu/page1422/Resources/Crit-Dimensions-Proceedings (accessed on October 31, 2012).Google Scholar
Metrology for Nanoparticle Characterization: Instruments, Standard Methods and Reference Materials Proc. Co-Nanomet Workshop Nuremberg (Germany), April 2010, http://www.euspen.eu/page1420/Resources/Eng-Nanoparticles-Proceedings (accessed on October 31, 2012) Google Scholar
Somorjai, G.A., Mater. Res. Soc. Bull. 23, 11 (1998).CrossRefGoogle Scholar
Baraton, M.-I. in Materials Sciences of Carbides, Nitrides and Borides, edited by Gogotsi, Y.G. and Andrievski, R.A., NATO Sci. Ser. (Kluwer Academic Publishers, Dordrecht, 1999), pp. 87102.CrossRefGoogle Scholar
Baraton, M.-I. in Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, edited by Baraton, M.-I. and Uvarova, I., NATO Sci. Ser. (Kluwer Academic Publishers, Dordrecht, 2001), pp. 4560.CrossRefGoogle Scholar
Prutton, M., Introduction to Surface Physics (Oxford University Press, Oxford, 1995).Google Scholar
Cavin, R.K. III, Herr, D.J.C., and Zhirnov, V.V., J. Nanopart. Res. 2, 213 (2000).CrossRefGoogle Scholar
Card, J. W. and Magnuson, B.A., J. Food Sci. 74, vi (2009).Google Scholar
Baer, D.R., J. Surf. Anal. 17, 163 (2011).CrossRefGoogle Scholar
Baraton, M.-I. and Merhari, L., J. Nanopart. Res. 6, 107 (2004).CrossRefGoogle Scholar
Baraton, M.-I., Chen, X. and Gonsalves, K.E., J. Mater. Chem. 6, 1407 (1996).CrossRefGoogle Scholar
Baraton, M.-I., Chen, X. and Gonsalves, K.E. in Molecularly Designed Nanostructured Materials and Composites, edited by Chow, G.-M. and Gonsalves, K.E. (ACS Symp. Ser. 622, Washington DC, 1996), pp. 312333.Google Scholar
Baraton, M.-I., Chen, X. and Gonsalves, K.E., NanoStruct. Mater. 8, 435 (1997).CrossRefGoogle Scholar
Baraton, M.-I. in Nonlithographic and Lithographic Methods of Nanofabrication-From Ultralarge Scale, edited by Karim, A., Merhari, L., Norris, D.J., Rogers, J.A., Xia, Y. (Mater. Res. Soc. Symp. Proc. 636, Warrendale, PA, 2001) pp. D.8.1.1-D.8.1.10.Google Scholar
Baraton, M.-I., Interfaces 12, 14 (2003).Google Scholar
Gonsalves, K.E., Baraton, M.-I., Singh, R., Hofmann, H., Chen, J.X., and Akkara, J.A. (Editors), Surface-Controlled Nanoscale Materials for High-Added-Value Applications, Mater. Res. Soc. Symp. Proc. 501, Warrendale, PA, 1998.Google Scholar
Baraton, M.-I. (Editor), Synthesis, Functionalization and Surface Treatment of Nanoparticles (American Scientific Publishers, Stevenson Ranch, CA, 2002).Google Scholar
Baer, D.R., Amonette, J.E., Engelhard, M.H., Gaspar, D.J., Karakoti, A.S., Kuchibhatla, S., Nachimuthu, P., Nurmi, J.T., Qiang, Y., Sarathy, V., Seal, S., Sharma, A., Tratnyek, P.G., and Wang, C.-M., Surf. Interface Anal. 40, 529 (2008).CrossRefGoogle Scholar
Baer, D.R., Gaspar, D.J., Nachimuthu, P., Techane, S.D., and Castner, D.G., Anal. Bioanal. Chem. 396, 983 (2010).CrossRefGoogle Scholar
Karakoti, A.S., Hench, L.L., and Seal, S., JOM 2006, 77.CrossRefGoogle Scholar
Winchester, M.R., Sturgeon, R.E., and Costa-Fernández, J.M., Anal. Bioanal. Chem. 396, 951 (2010).CrossRefGoogle Scholar
Zhang, B. and Yan, B., Anal. Bioanal. Chem. 396, 973 (2010).CrossRefGoogle Scholar
International Organization for Standardization (ISO), Technical Report TR 14187 “Surface chemical analysis - Characterization of nanostructured materials http://www.iso.org/iso/catalogue_detail.htm?csnumber=54487 (accessed on November 8, 2012).Google Scholar
Cressey, D., Nature 467, 264 (2010).CrossRefGoogle Scholar
Baraton, M.-I. in Nanostructures: Synthesis, Functional Properties and Applications, edited by Tsakalakos, T., Ovidʹko, I.A. and Vasudevan, A.K., NATO Sci. Ser. (Kluwer Academic Publishers, Dordrecht, 2003) pp. 427440.CrossRefGoogle Scholar
Evans Analytical Group (accessed on November 8, 2012): http://www.eaglabs.com/techniques/analytical_techniques Google Scholar
National Physical Laboratory (accessed on November 8, 2012): http://www.npl.co.uk/science-technology/surface-and-nanoanalysis Google Scholar
Science France.com, Recherche de laboratoires pour la caractérisation des matériaux (accessed on November 8, 2012): http://www.sciencefrance.com Google Scholar
Institut Rayonnement Matière de Saclay (IRAMIS) (accessed on November 8, 2012): http://iramis.cea.fr/en/Phocea/Vie_des_labos/Ast Google Scholar
Unger, W.E.S., Surface analysis at the nanoscale: Metrological challenges and progress in standardization, presentation pdf available at (accessed on November 8, 2012): http://www.co-nanomet.eu/content/co-nanomet/ENF09%20Workshop/Unger%20Presentation.pdf Google Scholar
Herzberg, G., Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, 1962).Google Scholar
Wilson, E.B. Jr, Decius, J.C., and Cross, P.L., Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra (Dover, NewYork, 1955).CrossRefGoogle Scholar
Schrader, B. (Editor), Infrared and Raman Spectroscopy. Methods and Applications (VCH, Weinheim, 1955).Google Scholar
Hair, M.L., Infrared Spectroscopy in Surface Chemistry (M. Dekker, New York, 1967).Google Scholar
Knözinger, H., Adv. Catal. 25, 184 (1976).Google Scholar
Boehm, H.-P. and Knözinger, H. in Catalysis, edited by Anderson, J.R.A. and Boudart, M. (Springer-Verlag, Berlin, 1983) Vol. 4, pp. 39207.CrossRefGoogle Scholar
Davydov, A.A., Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (John Wiley & Sons, New York, 1984).Google Scholar
Baraton, M.-I. in Handbook of Nanostructured Materials and Nanotechnology, edited by Nalwa, H.S., (Academic Press, San Diego, CA, 1999) pp. 89153.Google Scholar
Morterra, C. and Magnacca, G., Catal. Today 27, 497 (1996).CrossRefGoogle Scholar
Peri, J.B., J. Phys. Chem. 69, 220 (1965).CrossRefGoogle Scholar
Knözinger, H. and Ratnasamy, P., Catal. Rev. 17, 31 (1978).CrossRefGoogle Scholar
Merle, T., Baraton, M.-I., Laurent, Y., Quintard, P. and Lorenzelli, V. in Structural Ceramics and Composites, edited by Ziegler, G. and Hausner, H. (Proc. 2nd ECerS Vol. 1, Deutsche keramische Gesellschaft, Köln, 1993) pp. 257261.Google Scholar
Gonsalves, K.E., Chen, X. and Baraton, M.-I., Chem. Mater. 9, 328 (1997).Google Scholar
Baraton, M.-I., Boulanger, L., Cauchetier, M., Lorenzelli, V., Luce, M., Merle, T., Quintard, P., and Zhou, Y.H., J. Eur. Ceram. Soc. 13, 371 (1994).CrossRefGoogle Scholar
Baraton, M.-I., Merle, T., Quintard, P., and Lorenzelli, V., Langmuir 9, 1486 (1993).CrossRefGoogle Scholar
Baraton, M.-I., Chancel, F., and Merhari, L., NanoStruct. Mater. 9, 319 (1997).CrossRefGoogle Scholar
Baraton, M.-I., Merhari, L., Chancel, F. and Tribout, J. in Control of Semiconductor Surfaces and Interfaces, edited by Brierley, S.K., Gibson, J.M., Glembochi, O.J., Prokes, S.M., Woodall, J.M. (Mater. Res. Soc. Symp. Proc. 448, Warrendale, PA, 1997) pp. 8186.Google Scholar
Harrick, N.J., Phys. Rev. 125, 1165 (1962).CrossRefGoogle Scholar
Gibson, A.F., J. Sci. Instrum. 35, 273 (1958).CrossRefGoogle Scholar
Baraton, M.-I. and Merhari, L., Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 35, 733 (2005).CrossRefGoogle Scholar
Baraton, M.-I., Merhari, L., Keller, P., Zweiacker, K., and Meyer, J.-U. in Microcrystalline & Nanocrystalline Semiconductors, edited by Canham, L.T., Sailor, M.J., Tanaka, K., Tsai, C.C.(Mater. Res. Soc. Symp. Proc. 536, Warrendale, PA, 1999) pp. 341346.Google Scholar
Baraton, M.-I. and Merhari, L. in Nanophase and Nanocomposite Materials III, edited by Komarneni, S., Parker, J.C., Hahn, H. (Mater. Res. Soc. Symp. Proc. 581, Warrendale, PA, 2000) pp. 559564.Google Scholar
Baraton, M.-I. and Merhari, L., Scr. Mater. 44, 1643 (2001).CrossRefGoogle Scholar
Baraton, M.-I., Merhari, L., Ferkel, H., and Castagnet, J.F., Mater. Sci. Eng. C 19, 315 (2002).CrossRefGoogle Scholar
Baraton, M.-I. and Merhari, L. in Semiconductor Materials for Sensing, edited by Baraton, M.-I., Murayama, N., Parrish, C., and Seal, S. (Mater. Res. Soc. Symp. Proc. 828, Warrendale, PA, 2005) pp. 191196.Google Scholar