Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T07:55:33.089Z Has data issue: false hasContentIssue false

Suppression of Surface SiO2 Layer and Solid Phase Epitaxy of Amorphously Deposited Si Films using Heating-Up Under Si2H6 Environment

Published online by Cambridge University Press:  03 September 2012

Tae-Hee Choe
Affiliation:
Department of Metallurgy & Materials Science, Hong-Ik Univ., 72-1 Sangsu-Dong, Mapo-Gu, Seoul, Korea 121-791
Se-June Kim
Affiliation:
Department of Metallurgy & Materials Science, Hong-Ik Univ., 72-1 Sangsu-Dong, Mapo-Gu, Seoul, Korea 121-791
Woon Choi
Affiliation:
Department of Metallurgy & Materials Science, Hong-Ik Univ., 72-1 Sangsu-Dong, Mapo-Gu, Seoul, Korea 121-791
Hyoung-June Kim
Affiliation:
Department of Metallurgy & Materials Science, Hong-Ik Univ., 72-1 Sangsu-Dong, Mapo-Gu, Seoul, Korea 121-791
Get access

Abstract

A novel technique to realize a selectively grown Si epitaxy layer has been developed. This technique consists of deposition of amorphous Si with oxide-free Si surface, selective solid phase epitaxial (SPE) growth on Si windows, and etching of uncrystallized amorphous Si on SiO2 layer. Formation of surface oxide can be effectively suppressed by flowing Si2H6 gas during heating-up stage to the deposition temperature. This method enables us to grow epitaxial layer without any high temperature cleaning procedures. Substantially higher growth rate of vertical SPE on Si windows over lateral SPE on SiO2 regions allows the growth of thick SPE layer with a minimized lateral overgrowth. With a proper etching solution, the remaining amorphous Si on SiO2 layer can be readily etched to form a selectively defined epitaxial layer on Si windows.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Segwick, T.O., Berkenblit, M., and Kuan, T.S., Appl. Phys. Lett. 54, 2689 (1989).Google Scholar
2 Segwick, T.O., Agnello, P.D., Nguyen Ngoc, D., Kuan, T.S., and Scilla, G., Appl. Phys. Lett. 58, 1896 (1991).Google Scholar
3 Srinivasan, G.R. and Meyerson, B.S., J. Electrochem. Soc. 134, 1518 (1987).Google Scholar
4 Meyerson, B.S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
5 Hirayama, H., Tatsumi, T., Ogura, A., and Aizaki, N., Appl. Phys. Lett. 51, 2213 (1988).Google Scholar
6 Hirayama, H., Tatsumi, T., and Aizaki, N., Appl. Phys. Lett. 52, 2242 (1988).Google Scholar
7 Aketagawa, Ken-ichi, Tatsumi, Toru, and Sakai, Junro, J. Cryst. Growth 111, 860 (1991).Google Scholar
8 Hong, C.H., Park, C.Y., and Kim, H.J., J. Appl. Phys. 71, 5427 (1992).Google Scholar
9 Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H., and Nagasawa, Y., J. Appl. Phys. 64, 3516 (1988).Google Scholar
10 Zazzera, L.A. and Moulder, J.F., J. Electrochem. Soc. 136, 484 (1989).Google Scholar
11 Ljungberg, Karin, Backlund, Ylva, Soderbarg, Anders, Bergh, Mats, Andersson, Mats O., and Bengtsson, Stefan, J. Electrochem. Soc. 142, 1297 (1995).Google Scholar
12 Ogawa, Hiroki, Ishikawa, Kenji, Aoki, Masaru, Fujimura, Shuzo, Ueno, Nobuo, Horiike, Yasuhiro, and Harada, Yoshiya, Extended Abstracts of the 1995 International Conference on SSDM, Osaka, 13 (1995).Google Scholar
13 Kobayashi, K., Kukumoto, K., Katayama, T., Higaki, T., and Abe, H., Extended Abstracts of the 1992 International Conference on SSDM, Tsukuba, 17 (1992).Google Scholar
14 Meyerson, B.S., Himpsel, Franz J., and Uram, Kevin J., Appl. Phys. Lett. 57, 1034 (1990).Google Scholar