Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:06:21.585Z Has data issue: false hasContentIssue false

SUPERCONDUCTING PROPERTIES OF TERNARY GRAPHITE INTERCALATION COMPOUNDS

Published online by Cambridge University Press:  28 February 2011

A. Chaiken
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, 02139
G. Roth
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, 02139
T. Enoki
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, 02139
N. C. Yeh
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, 02139
M. S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, 02139
P. Tedrow
Affiliation:
Francis Bitter National Magnet Laboratory, Cambridge, MA 02139
Get access

Abstract

Graphite intercalation compounds (GIC's) are metal-semimetal superlattices which exhibit crystalline order, and have atomically perfect interfaces between the layers of the constituent species. From the standpoint of superconductivity, the KHg-GIC's are particularly interesting. The preparation and properties of these compounds are described, along with a series of recent experiments with hydrogen doping which have helped to elucidate their electronic properties. A density of states model suggested by the results of the hydrogen–doping experiments is presented and used to explain the variation of the superconducting transition temperature in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Klemm, R. A., Luther, A., and Beasley, M. R., Phys. Rev. B12, 877 (1975).CrossRefGoogle Scholar
[2] Gamble, F. R., DiSalvo, F. J., Klemm, R. A., and Geballe, T. H., Science 70, 568 (1970).CrossRefGoogle Scholar
[31 S. T Ruggiero, Barbee, T. W., and Beasley, M. R., Phys. Rev. B26, 4894 (1982).Google Scholar
[4] Lowe, W. P. and Geballe, T. H., Phys. Rev. B29, 4961 (1984).Google Scholar
[5] Dresselhaus, M. S. and Dresselhaus, G., Advances in Physics 30, 139 (1981).Google Scholar
[6] M. El Makrini, Lagrange, P., D. Gu6rard, and A. H6rold, Carbon 11, 211 (1980).Google Scholar
[7] lye, Y. and Tanuma, S., Phys. Rev. B 25, 4583 (1982).Google Scholar
[8] Timp, G., Chieu, T.C., Dresselhaus, P.D., and Dresselhaus, G., Phys. Rev. B 29, 6940 (1984).Google Scholar
[9] Werthamer, N. R., Phys. Rev. 132, 2440 (1963).CrossRefGoogle Scholar
[10] Bardeen, J., Cooper, L. N., and Schrieffer, J. R., Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
[11] Roth, G., Yeh, N.C., Chaiken, A., Dresselhaus, G., and Tedrow, P., Extended Abstracts of the Mat. Res. Soc., Symp. on Intercalated Graphite, 149 (1984).Google Scholar
[12] Woollam, J. A., Somoano, R. B., and P. O'Connor, Phys. Rev. Lett. 32, 712 (1974).Google Scholar
[13] Stritzker, B. and Waihl, H., Top. in Appl. Phys.29, edited by Alefeld, G. and J. V5lkl (Springer, Heidelberg, 1978), 243.Google Scholar
[14] Kaneiwa, S., Kobayashi, M., and Tsujikawa, I., J. Phys. Soc. Jpn. 51, 2375 (1982).Google Scholar
[15] Lagrange, P. and A. H6rold, Carbon 16, 235 (1978).CrossRefGoogle Scholar
[16] Roth, G., Chaiken, A., Enoki, T., Yeh, N. C., Dresselhaus, G., and Tedrow, P., Phys. Rev. B 32, 533 (1985).CrossRefGoogle Scholar
[17] Preil, M.E., Grunes, L.A., Ritsko, J.J., and Fischer, J.E., Phys. Rev. B 30, 5852 (1984).Google Scholar
[18] Enoki, T., Yeh, N.C., Chen, S. T., and Dresselhaus, G., Phys. Rev. B 33, xxx (1985).Google Scholar
[19] Enoki, T., Inokuchi, H., and Sano, M., Chem. Phys. Lett. 86, 285 (1982).Google Scholar
[20] Conard, J., Estrade-Szwarckopf, H., Lauginie, P., M. El Makrini, Lagrange, P., D. Gu~rard, Physica 105B, 290 (1981).Google Scholar
[21] Roberts, B.W., Physical, J. and Chemical Reference Data 5, 661 (1976).Google Scholar