Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T01:05:03.709Z Has data issue: false hasContentIssue false

Substrate Effects on the Growth of InN

Published online by Cambridge University Press:  10 February 2011

S. M. Donovan
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, FL, 32611
J. D. MacKenzie
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, FL, 32611
C. R. Abernathy
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, FL, 32611
S. J. Pearton
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, FL, 32611
P. Holloway
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, FL, 32611
F. Ren
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
J. M. Zavada
Affiliation:
U. S. Army Research Office, Raleigh, NC
B. Chai
Affiliation:
University of Central Florida, Orlando, FL
Get access

Abstract

Auger electron spectroscopy was used to examine the nitridation behavior of GaAs, sapphire and lithium aluminate (LAO) substrates exposed to an RF nitrogen plasma. No evidence of nitridation was found for the sapphire and LAO substrates. GaAs substrates did show evidence of nitridation which led to smooth InN surface morphology without the need for a low temperature buffer. Comparable InN films were obtained on sapphire and LAO substrates when a low temperature AlN buffer was used. Hall measurements indicate background carrier concentrations are relatively insensitive to substrate type, though mobilities decreased as surface morphology was improved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. BIO 1237 (1992) and references therein.Google Scholar
2. Ren, F., Chu, S. N. G., Abernathy, C. R., Fullowan, T. R., Lothian, J. and Pearton, S. J., Semicond. Sci. Tech. 7 793 (1992).Google Scholar
3. Donovan, S. M., MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Ren, F., Jones, K. and Cole, M., submitted to Appl. Phys. Lett.Google Scholar
4. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).Google Scholar
5. Kubota, K., Kobayashi, Y., and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).Google Scholar
6. Tansley, T. L. and Egan, R. J., Mater. Res. Soc. Symp. Proc. 242, 395 (1992).Google Scholar
7. Sullivan, B. T., Parsons, R. R., Westra, K. and Brett, M., J. Appl. Phys. 64 414 (1988).Google Scholar
8. Bryden, W. A., Ecelberger, S. A., Morgan, J. S., Poehler, T. O., and Kistenmacher, T. J., Mat. Res. Soc. Symp. Proc. 242, 409 (1992).Google Scholar
9. Kistenmacher, T. J., Ecelberger, S. A., and Bryden, W. A., Mater. Res. Soc. Symp. Proc. 242, 441 (1992).Google Scholar
10. Osamura, K., Naka, S. and Mukakami, Y., J. Appl. Phys. 46, 3432 (1975).Google Scholar
11. Matsuoka, T., J. Cryst. Growth 124, 433 (1992).Google Scholar
12. Molnar, R. J., Singh, R. and Moustakas, T. D., J. Elec. Mails, 24, 275 (1995).Google Scholar
13. Abernathy, C. R., Pearton, S. J., Ren, F., Wisk, P., J. Vac. Sci. Technol. B11 179 (1993).Google Scholar
14. Wilson, R. G., Chai, B. L. H., Pearton, S. J., Abernathy, C. R., Ren, F., and Zavada, J. M., Appl. phys. Lett., 69 3848 (1996).Google Scholar
15. DenBaars, S., presented at the Electrochemical Society Meeting, Los Angeles, 1996.Google Scholar