Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T04:09:08.306Z Has data issue: false hasContentIssue false

Submicron Ferroelectric Elements Fabricated by Direct Electron Beam Lithography

Published online by Cambridge University Press:  11 February 2011

Dong-Joo Kim
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL
Jin Seo Im
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL Chemistry Division, Argonne National Laboratory, Argonne, IL
Carol Thompson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL Dept. of Physics, Northern Illinois University, DeKalb, IL
S. K. Streiffer
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL
G. Wiederrecht
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL
O. Auciello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL
Get access

Abstract

To realize Gigabit density ferroelectric memory devices, downscaling issues involving processing, materials, and fundamental ferroelectric behavior must be resolved. To address patterning and characterizing ferroelectric films at the nanoscale, we have prepared different lateral sizes of ferroelectric PZT capacitors down to 120 nm, using direct-write electron beam lithography. Characterization of the piezoelectric activity of the patterned elements was performed by means of piezoelectric-sensitive scanning probe microscope in the contact mode. Switching of single 120 nm cells was achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Auciello, O., Scott, J. F., and Ramesh, R., Phys. Today 51, 22 (1998).Google Scholar
2. Okamura, S., Mori, K., Tsukamoto, T., and Shiosaki, T., Integr. Ferroelectr. 18, 311 (1997).Google Scholar
3. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., Appl. Phys. Lett. 75, 1793 (1999).Google Scholar
4. Stanishevski, A., Aggarwal, S., Prakash, A. S., Melngailis, J., and Ramesh, R., J. Vac. Sci. Technol. B 16, 3899 (1998).Google Scholar
5. Bühlmann, S., Dwir, B., Baborowski, J., and Muralt, P., Appl. Phys. Lett. 80, 3195 (2002).Google Scholar
6. Alexe, M., Gruverman, A., Harnagea, C., Zakharov, N. D., Pignolet, A., Hesse, D., and Scott, J. F., Appl. Phys. Lett. 75, 1158 (1999).Google Scholar
7. Chen, S. –Y. and Chen, I.-W., J. Am. Ceram. Soc. 81, 97 (1998).Google Scholar
8. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., Appl. Phys. Lett. 79, 242 (2001).Google Scholar