Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T19:24:59.392Z Has data issue: false hasContentIssue false

A Study of Tungsten-Titanium Barriers in Silver Metallization

Published online by Cambridge University Press:  01 February 2011

Shekhar Bhagat
Affiliation:
[email protected], Arizona State University, School of Materials, 1115 E Lemon Street,, #202, Tempe, AZ, 85281, United States, 4806486921
N. D. Theodore
Affiliation:
[email protected], Freescale Semiconductor Inc., Tempe, AZ, 85284, United States
T. L. Alford
Affiliation:
[email protected], Arizona State University, School of Materials, Tempe, AZ, 85281, United States
Get access

Abstract

This work investigated the viability of tungsten-titanium barrier layers for silver metallization. Reactive sputtered W-Ti was deposited on a Si wafer followed by an Ag thin film over layer. These samples were then annealed in vacuum at temperatures up to 700 °C. Characterization of these samples included using x-ray diffractometry, Rutherford backscattering spectrometry, scanning transmission microscopy, secondary ion mass spectroscopy, transmission electron microscopy, and four point probe analysis. The results indicated that the metal/diffusion barrier stack was stable up to 600 °C. Silicon started moving into the tungsten-titanium film at temperatures above 600 °C. Movement of Si resulted in local Si voiding. These results showed the promise of W-Ti as an effective barrier layer for silver metallization for process temperatures below 600 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Alford, T.L., Adams, D., Laursen, T., Ulrich, B.M., Appl. Phys. Lett. 68 (1996) 3251.Google Scholar
2 Wang, Y., Alford, T.L., Appl. Phys. Lett. 74 (1999) 52 Google Scholar
3 Chen, L., Zeng, Y., Nyugen, P., Alford, T. L., Mater. Chem. Phys. 76 (2002) 224. 4 (1984) 414.Google Scholar
4 Bergstrom, D. B., Petrov, I., Greene, J.E., J. Appl. Phys. 82 5 (1997) 2312.Google Scholar
5 Alford, T.L., Chen, L., Gadre, K. S., Thin Solid Films 429 (2003) 248.Google Scholar
6 Bhagat, S., Han, H., Alford, T. L., Thin Solid Films 515 (4) (2006) 1998.Google Scholar
7 Doolittle, L.R., Nucl. Instrum. Methods Res. B 9 (1985) 344.Google Scholar
8Powder Diffarction Files, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1998, Cards 040783, 040806 and 441294.Google Scholar
9 Li, J. P., Stackl, A. J., J. Electrochem. Soc. 142 2 (1995) 634.Google Scholar
10 Nemanich, R. J., Fulks, R. T., Stafford, B. T., Plas, H. A. Vander, J. Vac. Sci. Technol. A 3 (3) (1985) 938.Google Scholar
11 Siegal, M. P., Graham, W. R., Santiago, J. J., J. Appl. Phys. 66 (12) (1989) 6073.Google Scholar
12 Harris, J.M., Lau, S.S., Nicolet, M.A., Nowicki, R. S., J. Electrochem. Soc. 123 (1) (1976) 120.Google Scholar
13 Bhagat, S., Theodore, N. D., Alford, T. L., submitted to Thin Solid Films.Google Scholar
14 Shih, D.Y., Parasczak, J., Klymko, N., Flitsch, R., J. Vac. Sci. Technol. A 7 (1989) 1402.Google Scholar