Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:33:44.861Z Has data issue: false hasContentIssue false

Study of the Mechanical Behavior of BCC Transition Metals Using Bond-Order Potentials

Published online by Cambridge University Press:  15 February 2011

M. Mrovec
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272, U.S.A.
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272, U.S.A.
D. Nguyen-Manh
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX 1 3PH, U.K.
D. G. Pettifor
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX 1 3PH, U.K.
L. G. Wang
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno, Czech Republic
M. Sob
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno, Czech Republic
Get access

Abstract

Deformation properties of body-centered-cubic transition metals are controlled by the core structure of screw dislocations and their studies involve extensive computer simulations. In this paper we present the recently constructed bond-order potentials (BOP) that are based on the realspace parametrized tight-binding method. In order to examine the applicability of the potentials we have evaluated the energy differences of alternative structures, investigated several transformation paths leading to large distortions and calculated phonon dispersions. Using these potentials we have calculated γ-surfaces that relate to the dislocation core structures and discuss then the importance of directional bonding in studies of dislocations in transition metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Christian, J. W., Metall. Trans. A 14, 1237 (1983).Google Scholar
2. Duesbery, M. S., Dislocations in Solids, edited by Nabarro, F. R. N. (Amsterdam, North Holland), Vol. 8, p. 67 (1989).Google Scholar
3. Vitek, V., Prog. Mater. Sci. 36, 1 (1992).Google Scholar
4. Duesbery, M. S. and Vitek, V., Acta Mater. 46, 1481 (1998).Google Scholar
5. Pettifor, D. G., Bonding and Structure of Molecules and Solids, (Oxford University Press, Oxford, 1995).Google Scholar
6. Vitek, V., Perrin, R. C. and Bowen, D. K., Philos. Mag. A 21, 1049 (1970).Google Scholar
7. Basinski, Z. S., Duesbery, M. S. and Taylor, R., Can. J. Phys. 49, 2160 (1971).Google Scholar
8. Ito, K. and Vitek, V., Multiscale Modelling of Materials, edited by Bulatov, V., Rubia, T. de la, Phillips, R., Kaxiras, E. and Ghoniem, N. (Pittsburgh, MRS), Vol. 538, p. 87 (1999).Google Scholar
9. Moriarty, J. A., Phys. Rev. B 49, 12431 (1994).Google Scholar
10. Xu, W. and Moriarty, J. A., Phys. Rev. B 54, 6941 (1996).Google Scholar
11. Xu, W. and Moriarty, J. A., Comp. Mat. Sci. 9, 348 (1998).Google Scholar
12. Campbell, G. H., Foiles, S. M., Gumbsch, P., Rühle, M. and King, W. E., Phys. Rev. Lett. 70,449 (1993).Google Scholar
13. Campbell, G. H., Belak, J. and Moriarty, J. A., Acta Mater. 47, 3977 (1999).Google Scholar
14. Ochs, T., Elsdsser, C., Mrovec, M., Vitek, V., Belak, J. and Moriarty, J. A., Philos. Mag. A, to be published (2000).Google Scholar
15. Nunes, R. W., Bennetto, J. and Vanderbilt, D., Phys. Rev. B 58, 12563 (1998).Google Scholar
16. Valladares, A., White, J. A. and Sutton, A. P., Phys. Rev. Lett. 81, 4903 (1998).Google Scholar
17. Moriarty, J. A. and Widom, M., Phys. Rev. B 56, 7905 (1997).Google Scholar
18. Aoki, M., Phys. Rev. Lett. 71, 3842 (1993).Google Scholar
19. Aoki, M. and Pettifor, D. G., 1993, Physics of Transition Metals, edited by Oppeneer, P. M. and Kübler, J. (Singapore, World Scientific), p. 299 (1993).Google Scholar
20. Horsfield, A. P., Bratkovsky, A. M., Fearn, M., Pettifor, D. G. and Aoki, M., Phys. Rev. B 53, 1656, 12694 (1996).Google Scholar
21. Bowler, D. R., Aoki, M., Goringe, C. M., Horsfield, A. P. and Pettifor, D. G., Model. Sim. Mat. Sci. Eng. 5, 199 (1997).Google Scholar
22. Mrovec, M., Vitek, V., Nguyen-Manh, D., Pettifor, D. G., Wang, L. G. and Sob, M., Multiscale Modelling of Materials, edited by Bulatov, V., Rubia, T. de la, Phillips, R., Kaxiras, E. and Ghoniem, N. (Pittsburgh, MRS), Vol. 538, p. 529 (1999).Google Scholar
23. Pettifor, D. G., J. Phys. F: Metal Phys 8, 219 (1978).Google Scholar
24. Nguyen-Manh, D., Pettifor, D. G., Znam, S. and Vitek, V., Tight-Binding Approach to Computational Materials Science, edited by Turchi, P. E. A., Gonis, A. and Colombo, L. (Pittsburgh, MRS), Vol. 491, p. 353 (1998).Google Scholar
25. Haydock, R., Solid State Physics, edited by Ehrenreich, H. and Turnbull, D. (New York, Academic Press), Vol. 35, p. 216 (1980).Google Scholar
26. Lanczos, C., J. Res. Natl. Bur. Stand. 45, 225 (1950).Google Scholar
27. Horsfield, A. P. and Bratkovsky, A. M., Phys. Rev. B 53, 15381 (1996).Google Scholar
28. Girshick, A., Bratkovsky, A. M., Pettifor, D. G. and Vitek, V., Philos. Mag. A 77, 981 (1998).Google Scholar
29. Andersen, O. K., Jepsen, O. and Glétzel, D., Highlights of Condensed Matter Theory, edited by Bassani, F., Fumi, F. and Tosi, M. P. (Amsterdam, North Holland), p. 59 (1985).Google Scholar
30. Andersen, O. K., Jepsen, O. and Krier, G., Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V. E. E. (Singapore, World Scientific), p. 63 (1994).Google Scholar
31. Goodwin, L., Skinner, A. J. and Pettifor, D. G., Europhys. Lett. 9, 701 (1989).Google Scholar
32. Mrovec, M., Vitek, V., Nguyen-manh, D., Pettifor, D. G., Wang, L. G. and Sob, M., to be published (2000).Google Scholar
33. Powell, B. M., Martel, P. and A. Woods, D. B., Can. J. Phys. 55, 1601 (1977).Google Scholar
34. Woods, A. D. B., Phys. Rev. 136, A781 (1964).Google Scholar
35. Nguyen-Manh, D., Pettifor, D. G. and Vitek, V., to be published (2000).Google Scholar
36. Paidar, V., Wang, L. G., Sob, M. and Vitek, V., Model. Sim. Mat. Sci. Eng. 7, 369 (1999).Google Scholar
37. Blaha, P., Schwartz, K., Sorantin, P. and Trickey, S. B., Comp. Phys. Comm. 59, 399 (1990).Google Scholar
38. Bulatov, V. V. and Kaxiras, E., Phys. Rev. Lett. 78, 4221 (1997).Google Scholar
39. Mryasov, O. N., Gornostyrev, Y. N. and Freeman, A. J., Phys. Rev. B 58, 11927 (1998).Google Scholar
40. Ackland, G. J. and Thetford, R., Philos. Mag. A 56, 15 (1987).Google Scholar
41. Duesbery, M. S., Proc. Roy. Soc. London A 392, 145, 175 (1984).Google Scholar