Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T04:12:52.049Z Has data issue: false hasContentIssue false

A Study of the MBE Growth of MGO on The FE(001) Surface

Published online by Cambridge University Press:  15 February 2011

J.L. Vassent
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensdée SP2M/MP, 38054 Grenoble Cédex 9, France
M. Dynna
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensdée SP2M/MP, 38054 Grenoble Cédex 9, France
G. Patrat
Affiliation:
Laboratoire de Cristallographie, CNRS, BP166, 38042 Grenoble Cedex 9, France
B. Gilles
Affiliation:
LTPCM, ENSEEG, BP 75, 38402 Saint Martin d'Hères, France
A. Marty
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensdée SP2M/MP, 38054 Grenoble Cédex 9, France
Get access

Abstract

The deposition of MgO on the Fe(001) surface has been carried out using electron beam evaporation. MgO is observed to grow epitaxially with a 45° rotation between the Fe(001) and MgO(001) unit cell axes. Oscillations in the intensity of the RHEED specular beam are observed at room temperature showing that growth is two-dimensional. The relaxation of the in-plane lattice parameter during the growth at room temperature has been investigated in-situ by measuring the position of the RHEED streaks and ex-situ with GIXD experiments. Pseudomorphic growth is observed up to about five monolayers. Then the in-plane lattice parameter starts to evolve towards the MgO bulk parameter. HREM shows that the relaxation of MgO occurs via the generation of 1/2<011> misfit dislocations which are non-uniformly spaced at the Fe/MgO interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maekawa, S. and Gafert, U., IEEE Trans. Magn. MAG-18 707 (1982).Google Scholar
2. Gilles, B., Emery, J., Marty, A., Joud, J.C. and Chamberod, A., Mater Res. Soc. Symp. Proc. 237, 511 (1992).Google Scholar
3. Schonberger, U., Anderson, O.K. and Methfessel, M., Acta. metall. mater. 40, S1 (1992).Google Scholar
4. Mezey, L.Z. and Giber, J., Jap. J. Appl. Phys. 21,1569 (1982).Google Scholar
5. Massies, J. and Grandjean, N., Phys. Rev. Lett. 71, 1411 (1993).Google Scholar
6. Singh, R.N. and Coble, R.L., J. Appl. Phys. 45, 981 (1974).Google Scholar
7. Hirth, J.P. and Lothe, H., Theory of Dislocations, Mc Graw-Hill, New York (1982).Google Scholar
8. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth, 27, 118 (1974).Google Scholar
9. Dynna, M., Okada, T. and Weatherly, G.C., Acta metall. mater. 42, 1661 (1994).Google Scholar