Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T15:02:58.997Z Has data issue: false hasContentIssue false

Study of the Formation of WOx Nanostructures Supported on Zirconia Prepared by Different Synthesis Routes

Published online by Cambridge University Press:  01 February 2011

Martha L. Hernández
Affiliation:
Instituto Politécnico Nacional, ESIQIE, Av. IPN s/n Zacatenco, 07738 D. F., México
Ascención Montoya
Affiliation:
Instituto Politécnico Nacional, ESIQIE, Av. IPN s/n Zacatenco, 07738 D. F., México
Paz Del angel
Affiliation:
Instituto Mexicano del Petróleo, DIyP, Eje Central L. Cárdenas Norte 152, 07730 D.F., México
Silvia P. Paredes
Affiliation:
Instituto Mexicano del Petróleo, DIyP, Eje Central L. Cárdenas Norte 152, 07730 D.F., México
Sergio O. Flores
Affiliation:
Instituto Politécnico Nacional, ESIQIE, Av. IPN s/n Zacatenco, 07738 D. F., México
Get access

Abstract

Different synthesis procedures of Pt supported on tungstated zirconia catalysts (Pt/WOx-ZrO2) were investigated with the aim to elucidate the different WOx nanostructures developed on the zirconia surface depending on the preparation route. Pt/WOx-ZrO2 catalysts were synthesized by the coprecipitation and impregnation methods and pretreated by various procedures such as different calcinations temperatures or the use of reflux. The catalysts characterization was carried out by X-ray diffraction (XRD), Raman spectroscopy, transmission and scanning electron microscopy (TEM, SEM) and nitrogen physisorption, and the catalytic activity was evaluated in the n-hexane isomerization reaction. The results indicate that the development of active sites for isomerization of n-hexane is enhanced by the stabilization of the WOx nanostructures on the surface of zirconia, before the formation of the WO3 crystallites, and it largely depends on the synthesis method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ono, Y., Catal.Today 81, 3 (2003).Google Scholar
2. Corma, A., Serra, J. M., and Chica, A., Catal.Today 81, 3495 (2003).Google Scholar
3. Hernandez-Pichardo, M. L., Fuente, J. A. Montoya de la, Angel, P. del, Vargas, A., Hernández, I. and González-Brambila, M., Catal. Commun. 11, 408 (2010).Google Scholar
4. A. Martínez, Prieto, G., Arribas, M. A., Concepción, P. and Sánchez-Royo, J. F., J. Catal. 248, 288 (2007).Google Scholar
5. Barton, D. G., Shtein, M., Wilson, R. D., Soled, S. L. and Iglesia, E., J. Phys. Chem. B 103,630 (1999).Google Scholar
6. Barrera, A., Montoya, J.A., Viniegra, M., Navarrete, J., Espinosa, G., Vargas, A., Angel, P. del and Pérez, G., Appl. Catal. A 290, 97 (2005).Google Scholar
7. Santiesteban, J. G., Calabro, D. C., Chang, C. D., Vartuli, J. C., Fiebig, T. J. and Bastian, R. D., J. Catal. 202, 25 (2001).Google Scholar
8. Vaudagna, S. R., Canavese, S. A., Comelli, R.A. and Fígoli, N. S., Appl. Catal. 168, 93(1998).Google Scholar
9. Ross-Medgaarden, E. I. and Wachs, I. E., J. Phys. Chem. C 111, 15089 (2007).Google Scholar
10. Huang, Y., McCarthy, T. J. and Sachtler, W. M. H., Appl. Catal. A 148, 135 (1996).Google Scholar