Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:20:57.872Z Has data issue: false hasContentIssue false

A Study of the Diffusion of Phosphorus in Ni/amorphous NiPx and a-NiPx/a-NiPy. Multilayers

Published online by Cambridge University Press:  26 February 2011

C. A. Ross
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
L. M. Goldman
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
J. A. Barnard
Affiliation:
Dept. of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487
F. Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

An x-ray technique has been used to measure the diffusion of phosphorus in crystalline Ni/amorphous NiPx and amorphous NiPx/NiPy multilayer thin films produced by electrodeposition. The films have repeat lengths in the range 30–80Å and P contents x, y < 25at.%. A value for the interdiffusivity in amorphous NiPx is derived from measurements on fully amorphous films. The behaviour of partially crystalline films is described in terms of phosphorus diffusion into the nickel grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Greer, A. L. and Spaepen, F., in Synthetic Modulated Structures, (Academic, NY 1985) eds. Chang, L. and Giessen, B. C., p.419 CrossRefGoogle Scholar
(2) Brenner, A., Electrodeposition of Alloys: Principles and Practice, (Academic, NY 1963), Ch. 35Google Scholar
(3) Cargill, G. S. III, J. Appl. Phys. 41(1) 12 (1970)Google Scholar
(4) Handbook of Binary Phase Diagrams, ed. Massalski, T. B. (Amer. Soc. for Metals, OH 1986)Google Scholar
(5) Bakonyi, I., Cziraki, A., Nagi, I., Hosso, M., Z. Metall. 77 425 (1986)Google Scholar
(6) Goldman, L. M., Ross, C. A., Ohashi, W., Wu, D., Spaepen, F., Appl. Phys. Lett. 55(21) 2182 (1989)Google Scholar
(7) Ross, C. A., Goldman, L. M., Spaepen, F., Proc. Mater. Res. Soc., 160 571 (1990)Google Scholar
(8) Metals Handbook 9th Edition, ed. Wood, W. G. (Amer. Soc. for Metals, OH, 1982) v.5 p. 199 Google Scholar
(9) Cargill, G. S. III, Ph.D. Thesis, Harvard University, Cambridge, MA (1969)Google Scholar
(10) Sugarwara, M., Kondo, M., Yamazaki, S., Nakajima, K., Appl. Phys. Lett., 52(9) 745 (1988)Google Scholar
(11) Spiller, E., Rosenbluth, A. E., Optical Eng., 25 954 (1986)CrossRefGoogle Scholar
(12) Cantor, B., Cahn, R. W., Chapter 25 of Amorphous Metal Alloys, ed. Luborsky, F. E. (Butterworths, London, 1983)Google Scholar
(13) Ashby, M. F., Spaepen, F., Williams, S., Acta Metall., 26 1647 (1978)Google Scholar
(14) Sadoc, J. F., Dixmier, J., Mater. Sci. Eng. 23 187 (1976)Google Scholar
(15) Waseda, Y., Okazaki, H., Masumoto, T., J. Mater. Sci. 12 1927 (1977)Google Scholar
(16) Rundqvist, S., Acta Chem. Scand. 16 242 (1962)Google Scholar
(17) Frost, H. J., Ashby, M. F., Spaepen, F., A catalogue of [100], [110] and [111] symmetric tilt boundaries in f.c.c. hard sphere crystals, N.S.F. Materials Research Laboratory Technical Report, Harvard University (1982)Google Scholar
(18) Nelson, J. R., Toth, L. E., Judy, J. H., J. Electron. Mater. 7(1) 123 (1978)Google Scholar