Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:58:07.404Z Has data issue: false hasContentIssue false

Study of the Crystalline to Amorphous Silicon Boundary Following Laser Induced Solid Phase Epitaxy.

Published online by Cambridge University Press:  15 February 2011

J. P. Gonchond
Affiliation:
Cnet/Cns, BP : 42 – 38240, Meylan-Grenoble, France.
G. A. Rozgonyi
Affiliation:
Cnet/Cns, BP : 42 – 38240, Meylan-Grenoble, France.
D. Bois
Affiliation:
Cnet/Cns, BP : 42 – 38240, Meylan-Grenoble, France.
Get access

Abstract

EBIC and voltage contrast SEM microscopy, combined with optical microscopy. chemical etching and Talystep profiling have been used to investigate cw laser annealing of a-Si in the slip-free SPE regime. Special attention is devoted to the edges and extremities of the line scans, i.e. to the c-to a-Si boundary. At very low power, evidence is given for an initial reordering and thus electrical activation stage of the a-Si. For the higher power range regrowth occurs through two different processes. The EBIC yield is interpreted in terms of a balance between annealing of the ion implantation damage and defect generation in the si substrate during the laser annealing. These results are extended to the case of a scanned electron beam annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leamy, H. J., Ferris, S. D., Miller, G. L., Brown, W. L. and Celler, G. K., Laser-Solid Interactions and Laser Processing, AIP Proc. 50, 556 (1979).Google Scholar
2. Mizuta, M., Sheng, N. H., Merz, J. L., Lietola, A., Gold, R. B. and Gibbons, J. F., Appl. Phys. Lett. 37(2), 154 (1980).CrossRefGoogle Scholar
3. Baumgart, H., Hildebrand, O., Phillipp, F. and Rozgonyi, G. A., 2nd Oxford Microscopy Conference on Semiconducting Materials, april 1981.Google Scholar
4. Sheng, N. H., Mizuta, M. and Merz, J. L., (idem ref. 1), p 155.Google Scholar
5. See the review by : Holt, D. B. in Quantitative Scanning Electron Microscopy (Acad. Press., N. Y. 1974) pp 213286.Google Scholar
6. Everhart, T. E. and Hoff, P. H. J. A. P. 42, 5837 (1971).Google Scholar
7. Secco d'Aragona, F., Electrochem., J. Soc. 119, 948 (1972).Google Scholar
8. Rozgonyi, G. A., Leamy, H. J., Sheng, T. T. and Celler, G. K., Laser Solid Interactions and laser Processing, ibid p 457.Google Scholar
9. Possin, G. E. and Kirkpatrick, C. G. J. of Microscopy, 118, 291 (1980).CrossRefGoogle Scholar
10. Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W. and Sigman, T. W.,J. Appl. Phys. 48(10), 4234 (1977).CrossRefGoogle Scholar
11. Perio, A., CNET-CNS, private communication.Google Scholar
12. Fan, J. C. and Anderson, C. H., J. Appl. Phys. 52(6), 4003 (1981).CrossRefGoogle Scholar
13. Bernstein, T., Hall, I. W. and Kalish, R., Radiation effects, 46, 31 (1980).CrossRefGoogle Scholar
14. Chantre, A., Kechouane, M. and Bois, D., this conference.Google Scholar