Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T14:26:57.915Z Has data issue: false hasContentIssue false

A Study of Rhombohedral Phase in Y2 O3 -Partially Stabilized Zirconia

Published online by Cambridge University Press:  25 February 2011

Jukishige Kitano
Affiliation:
Toray Research Center, IncOtsu, Shiga, 520, Japan
Y. Mori
Affiliation:
Toray Research Center, IncOtsu, Shiga, 520, Japan
A. Ishitani
Affiliation:
Toray Research Center, IncOtsu, Shiga, 520, Japan
T. Masaki
Affiliation:
Technical Development Department, Toray Industries, Inc., Otsu, Shiga, 520, Japan
Get access

Abstract

Tetragonal to rhombohedral phase transformation was studied by X-ray diffraction technique on the ground surfaces of tetragonal zirconia polycrystals (Y-TZP) and partially stabilized zirconia (Y-PSZ) with 2.0 to 5.0 mol% Y2 O3 contents prepared by hot isostatic pressing. The rhombohedral phase increased with increase of Y2 O3 content from 2.0 to 5.0 mol%, and also with the increase of HIPing temperature from 1400 to 1600°C. The stability of the phase was also studied with regard to the surface finish and annealing. The subsequent heat treatment of the samples was found to promote the reverse rhombohedral to tetragonal transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Garvie, R.C., Hannink, R.H. and Pascoe, R.T., Nature 258, 703 (1975).Google Scholar
2. Gupta, T.K., Bechtold, J.H., Kuznicki, R.C., Cadoff, L.H. and Rossing, B.R., J. Mater. Sci. 12, 2421 (1977).Google Scholar
3. Masaki, T. and Kobayashi, K., in Proceedings of the Japanese Ceramics Society Meeting (1981), pp. 2–3.Google Scholar
4. Tsukuma, K., Kubota, Y. and Tsukidate, T., in Advances in Ceramics, Vol.12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M. and Heuer, A.H. (American Ceramic Soc., Columbus, Ohio, 1984) pp. 382390.Google Scholar
5. McMeeking, R. M. and Evans, A.G., J. Am. Ceram. Soc. 65, 242 (1982).Google Scholar
6. Lange, F.F., J. Mater. Sci. 17, 225263 (1982).CrossRefGoogle Scholar
7. Evans, A.G. and Heuer, A.H., J. Am. Ceram. Soc. 63, 242 (1982).Google Scholar
8. Pujari, V.K. and Jawed, I., J. Am. Ceram. Soc. 68, C242 (1985).Google Scholar
9. Hasegawa, H., J. Mater. Sci. Lett. 2, 91 (1983).Google Scholar
10. Hasegawa, H., Hioki, T. and Kamigaito, O., J. Mater. Sci. Lett. 4, 1092 (1985).Google Scholar
11. Sakuma, T., Yoshizawa, Y. and Suto, H., J. Mater. Sci. Lett. 4, 29 (1985).CrossRefGoogle Scholar
12. Masaki, T., J. Am. Ceram. Soc. 69, 519(1986); 69, 638 (1986).Google Scholar
13. Garvie, R.C. and Nicholson, P.S., J. Am. Ceram. Soc. 55, 303 (1972).Google Scholar
14. Scott, H.G., J. Mater. Sci. 10, 1527 (1975).Google Scholar
15. Heuer, A.H. and Rühle, M., in Advances in Ceramics, vol.12, Science and Technology of Zirconia II, edited by Claussen, N., Ruhle, M. and Heuer, A.H. (American Ceram. Soc., Columbus, Ohio, 1984), pp. 113.Google Scholar
16. Hindeleh, A.M. and Johnson, D.J., J. Phys. D. Appl. Phys. 4, 259 (1971); Polymer 13, 423 (1972).Google Scholar