Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T04:32:15.156Z Has data issue: false hasContentIssue false

Study of Nanostructure Inclusion Effects on the Thermoelectric Behavior of Ca3Co4O9 Thin Films Grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

Evan Lyle Thomas
Affiliation:
[email protected], University of Dayton Research Institute, Metals and Ceramics Division, Dayton, Ohio, United States
Xueyan Song
Affiliation:
[email protected], West Virginia University, Mechanical and Aerospace Engineering, Morgantown, West Virginia, United States
Yonggao Yan
Affiliation:
[email protected], NIST, Ceramics Division, Gaithersburg, Maryland, United States
Joshua Martin
Affiliation:
[email protected], NIST, Ceramics Division, Gaithersburg, Maryland, United States
Winnie Wong-Ng
Affiliation:
[email protected], NIST, Ceramics Division, Gaithersburg, Maryland, United States
Margaret Ratcliff
Affiliation:
[email protected], University of Dayton, Mechanical Engineering, Dayton, Ohio, United States
Paul N. Barnes
Affiliation:
[email protected], Air Force Research Laboratory, Propulsion Directorate, WPAFB, Ohio, United States
Get access

Abstract

The influence of incorporating nanoparticulate additions into Ca3Co4O9 (CCO) thin films prepared by pulsed laser deposition using composite targets of CCO and CCO + 3wt% BaZrO3 (BZO) on Si and LaAlO3 substrates is investigated. X-ray data and high-resolution scanning electron microscopy reveal preferred c-axis orientation of the films deposited on Si substrates with the formation of nanoparticles between ∼ 10 – 50 nm. Preliminary thermoelectric behavior shows an enhancement of the power factor α2/ρ at room temperature. The microstructure and thermoelectric behavior of the CCO films are compared to the BZO-doped films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tritt, T.M. and Subramanian, M.A. MRS Bull. 31 (2006) 188194, and references therein.Google Scholar
2 Masset, A.C. Michel, C. Maignan, A. Hervieu, M. Toulemonde, O. and Studer, F. Phys. Rev. B 62 (2000) 166.Google Scholar
3 Shikano, M. and Funahashi, R. Appl. Phys. Lett. 82 (2003) 1851.Google Scholar
4 Tarascon, J.M, Ramesh, R. Barboux, P. Hedge, M.S. Hull, G.W. Greene, L.H. Giroud, M. LePage, Y. McKinnon, W.R. Waszczak, J.V. and Schneemeyer, L.F. Solid State Commun. 71 (1989) 663.Google Scholar
5 Zide, J.M. Klenov, D.O. Stemmer, S. Gossard, A.C. Zheng, G. Bowers, J.E. Vashaee, D. and Shakouri, A. Appl. Phys. Lett. 87 (2005) 112102.Google Scholar
6 Varanasi, C.V. Burke, J. Brunke, L. Wang, H. Sumption, M. and Barnes, P.N. J. Appl. Phys. 102 (2007) 063909.Google Scholar
7 Varanasi, C.V. Burke, J. Wang, H. Lee, J.H. and Barnes, P.N. Appl. Phys. Lett. 93 (2008) 092501.Google Scholar
8 Otani, M. Lowhorn, N.D. Schenck, P.K. Wong-Ng, W., Green, M.L. Itaka, K. and Koinuma, H. Appl. Phys Lett. 91 (2007) 132102.Google Scholar
9 Otani, M. Itaka, K. Wong-Ng, W., Schenck, P.K. and Koinuma, H. Appl. Surf. Sci. 254 (2007) 765767.Google Scholar
10 Wang, Y. Sui, Y. Cheng, J. Wang, X. Miao, J. Liu, Z. Qian, Z. and Su, W. J. Alloy. Compd. 448 (2008) 15.Google Scholar