Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T16:26:30.793Z Has data issue: false hasContentIssue false

Study of Nano-cluster Formation in Fe-18Cr ODS Ferritic Steel by Atom Probe Tomography

Published online by Cambridge University Press:  01 February 2011

Olena Kalokhtina
Affiliation:
[email protected], GPM-UMR CNRS6634- Université et Insa de Rouen, Saint Etienne du Rouvray, France
Bertrand Radiguet
Affiliation:
[email protected], GPM-UMR CNRS6634- Université et Insa de Rouen, Saint Etienne du Rouvray, France
Yann de Carlan
Affiliation:
[email protected], CEA,DEN,DMN,SRMA, Saclay, France
Philippe Pareige
Affiliation:
[email protected], GPM-UMR CNRS6634- Université et Insa de Rouen, Saint Etienne du Rouvray, France
Get access

Abstract

A high chromium ferritic Oxide Dispersion Strengthened steel was produced by mechanical alloying of Fe-18Cr-1W-0.3Ti-0.3Ni-0.15Si and 0.5% Y2O3 (wt.%) powders in industrial attritor, followed by hot extrusion at 1100°C. The material was characterized by Atom Probe Tomography on each step of manufacturing process: as-milled powder and in final hot extruded state. In addition, to get information on clustering kinetics the powder was also characterized after annealing at 850°C during 1 hour. Atom Probe Tomography revealed that the oxide dispersion strengthened steel Fe-18Cr contains nanometer scale yttrium- and oxygen-enriched nanoclusters in as-milled state. Their evolution is shown after subsequent annealing and hot extrusion. More well defined nanophases also enriched in Ti are observed. A mechanism of their formation is proposed. Mechanical alloying results in supersaturated solid solution with presence of small Y- and O-enriched clusters. Subsequent annealing stimulates incorporation of Ti to the nucleii that were previously formed during mechanical alloying.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Garner, F.A. Toloczko, M.B. Senser, B.H. J. Nucl. Mater., 276 (2000), p. 123.Google Scholar
2 Fisher, J.J. ODS Alloys for Use in Breeder Reactors, USPTO, USA (1978).Google Scholar
3 Nanstad, R.K. McClintock, D.A. Hoelzer, D.T. Tan, L. Allen, T.R. J. Nucl. Mater (2009) p. 33 Google Scholar
4 Asano, K. Kohno, Y. Kohyama, A. Suzuki, T. Kusanagi, H. J. Nucl. Mater. (1988) p. 928 Google Scholar
5 Pareige, P. Miller, M.K. Stoller, R.E. Hoelzer, D.T. Cadel, E. Radiguet, B. J. Nucl. Mater. (2007), p. 136 Google Scholar
6 Sagaradze, V. V., Shalaev, V.I., Arbuzov, V.L., Goshchitskii, B.N., Tian, Y., Qun, W., Jiguang, S. J. Nucl. Mater. (2002).Google Scholar
7 Miller, M. K. Kenik, E. A. Russell, K. F. Heatherly, L. Hoelzer, D. T. Maziasz, P. J. Mat. Sc. and Eng., (2003) p. 140 Google Scholar
8 Okuda, T. and Fujiwara, M. J. Mater. Sci. Lett. 14, (1995) p. 1600.Google Scholar
9 Ukai, S. Nishida, T. and Okada, H. J. Nucl. Sci. Technol. (1997) p. 256 Google Scholar
10 Ukai, S. Nishida, T. Okuda, T. and Yoshitake, T. J. Nucl. Mater., 258–263, (1998) p. 1745.Google Scholar
11 Alinger, M.J. Odette, G.R. and Hoelzer, D.T. J. Nucl. Mater., 329–333, (2004) p. 382.Google Scholar
12 Ukai, S. and Ohtsuka, S. Energy Mater. 2 (2007) p. 26.Google Scholar
13 Ukai, S. et al. , J. Nucl. Mater., 204 (1993) p. 74.Google Scholar
14 Ukai, S. and Fujiwara, M. J. Nucl. Mater., 307–311 (2002), p. 749.Google Scholar
15 Miller, M.K. Fu, C.L. Krcmar, M. Hoelzer, D.T. Liu, C.T., Front. Mater. Sci. (2009). p. 9.Google Scholar
16 Ratti, M. Leuvrey, D. Mathon, M.H. Carlan, Y. de. J. Nucl. Mater 386–388 (2009), p. 540.Google Scholar
17 Sakasegawa, H. Chaffron, L. Legendre, F. Boulanger, L. Cozzika, T. Brocq, M. Carlan, Y. de. J. Nucl. Mater 384 (2009), p. 117.Google Scholar
18 Miller, M.K. Hoelzer, D.T. Kenik, E.A. et al. J. Nucl. Mater. 329–333 (2004).Google Scholar
19 Goshchitskii, B. N. Sagaradze, V. V. Shalaev, V. I. et al. J. Nucl. Mater (2002). p. 783.Google Scholar
20 Klimiankou, M. Lindau, R. and Moslang, A. J Nucl Mater 329–333 (2004). p. 347.Google Scholar
21 Hoelzer, D.T. Bentley, J. Sokolov, M.A. Miller, M.K. Odette, G.R. and Alinger, M.J. J. Nucl. Mater. 367–370 (2007), p. 166.Google Scholar
22 Deconihout, B. Chamberland, S. and Blavette, D. Adv Mater 6 (1994), p. 695.Google Scholar
23 Miller, M.K. Atom probe tomography. Analysis at the atomic level. New York, 2000.Google Scholar
24 Cerezo, A. Clifton, P. H. Galtrey, M. J. Humphreys, C., Kelly, T. Larson, D. Materials Today (2007), p. 26.Google Scholar
25 Brocq, M. Radiguet, B. Poissonnet, S. Cuvilly, F. Pareige, P. Legendre, F. (in press).Google Scholar
26 Miller, M.K. Russell, K.F.. Ultramicroscopy 107 (2007).Google Scholar
27 Blavette, D. Bostel, A. Sarrau, J.M. Deconihout, B. Menand, A. Nature 363 (1993).Google Scholar
28 Gault, B. Vurpillot, F. Vella, A. Gilbert, M. Menand, A. Blavette, D. Deconihout, B.. Rev. Sci. Instrum. 77 (2006).10.1063/1.2194089Google Scholar
29 Bas, P. Bostel, A. Deconihout, B. Blavette, D. et al. Applied Surface Science (1995), p. 298.Google Scholar
30 Danoix, F., Grancher, G., Bostel, A., Blavette, D. Ultramicroscopy (2007), p. 739.Google Scholar
31 Thuvander, M. Andrén, H.O., Stiller, K. and Hu, Q. H.. Ultramicroscopy (1998), p. 279.Google Scholar
32 Marquis, E. A. Applied Physics letters 93, (2008).Google Scholar
33 Marquis, E. A. Vurpillot, F.. Microscopy and Microanalysis (2008), p. 561.Google Scholar
34 Blavette, D. Vurpillot, F. Pareige, P. Menand, A.. Ultramicroscopy 89 (2001), p. 145.Google Scholar
35 Miller, M. K. Kenik, E. A. Russell, K. F. Heatherly, L. Mat. Sc. and Eng. (2003), p. 140.Google Scholar
36 Fu, C.L. Krcmar, M. Painter, G.S. X. Physical review letters 99 (2007).Google Scholar
37 Soni, P.R. Mechanical alloying. Fundamentals and application, England, 2000.Google Scholar
38 Toualbi, L. Ratti, M. G.André, Onimus, F. Malaplate, J. Carlan, Y. de, Proceedings of the 14th International Conference on Fusion Reactor Materials, 2009.Google Scholar
39 Kimura, Y. Takaki, S. Suejima, S. Uemor, R. and Tamehiro, H. ISIJ Int 39 (1999), p. 176.Google Scholar