Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:43:06.468Z Has data issue: false hasContentIssue false

A Study of Gettering Efficiency and Stability in Czochralski Silicon

Published online by Cambridge University Press:  26 February 2011

Scott A. McHugo
Affiliation:
University of California, Department of Materials Science, Berkeley, CA 94720
E. R. Weber
Affiliation:
University of California, Department of Materials Science, Berkeley, CA 94720
M. Mizuno
Affiliation:
SEH Isobe R&D Center, Shin-Etsu Handotai Co., Ltd. 2-13-1 Isobe. Annaka-shi, Gunma 379-01, Japan
F. G. Kirscht
Affiliation:
Siltec Silicon, 1351 Tandem Avenue, Salem OR 97303, USA
Get access

Abstract

Gettering efficiencies and stabilities of internal gettering sites for metallic impurities in high and low carbon doped silicon have been compared with ramped and standard two-step pre-annealing conditions. This study was intended to compare two proposed techniques to shorten the long low temperature nucleation step in the standard Hi-Lo-Hi internal gettering site formation treatment. Specifically, we compare the affect of carbon and a ramped annealing sequence on oxygen precipitate formation and gettering effectiveness. Our results show both techniques accelerate oxygen precipitation, however, only the low carbon ramped materials produced efficient and stable gettering sites. The high carbon materials did not with either annealing treatment. This disparity in performance is due to a difference in the oxygen precipitate’s strain field. The precipitates in the low carbon material possessed a high strain field with strain-induced defects while in the high carbon material they were strain-free with no defects. These results indicate the strain stabilizes the gettered impurity such that the gettering rate is increased and stability is enhanced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tan, T.Y., Gardner, E.E. and Tice, W.K., Appl. Phys. Lett. 30, 175 (1977).Google Scholar
2. Gilles, D., Hahn, S. and Weber, E.R., Phys. Rev. Lett. 64, 196 (1990).Google Scholar
3. Kishino, S., Aoshima, T., Yoshinaka, A., Schimizu, H. and Ono, M., Jpn. J. Appl. Phys. 23, L9 (1984).Google Scholar
4. Kirscht, F.G., Weber, E.R. and Babanskaya, I., Solid State Phenomena 19, p. 137 (1991).Google Scholar
5. Sun, Q., Yao, K.H., Lagowski, J. and Gatos, H.C., J. Appl. Phys. 67, 1 (1990).Google Scholar
6. Gupta, S., Messoloras, S., Schneider, J.R., Stewart, R.J. and Zulehner, W., Semiconductor Sci. Technology 7, 6 (1992).Google Scholar
7. Hahn, S., Arst, M., Ritz, K.N., Shatas, S., Stein, H.J., Rek, Z.U. and Tiller, W.A., J. Appl. Phys. 64, 15 (1988).Google Scholar
8. Tsai, H.L., in Semiconductor Silicon, edited by Huff, H.R., Abe, T. and Kolbesen, B. (Electrochemical Society, Pennington, NJ, 1986), p. 790.Google Scholar
9. Rodgers, W.B., Massoud, H.Z., Fair, R.B., Gösele, U., Tan, T.Y. and Rozgonyi, G.A., J. Appl. Phys. 65, 4215 (1989)Google Scholar
10. Gaworzewski, P., Hild, E., Kirscht, F.G. and Vecsernyes, L., Phys. Status Solidi (a) 85, 133 (1984).Google Scholar
11. Livingstone, F.M., Messoloras, S., Newman, R.C., Pike, B.C., Stewart, R.J., Binns, M.J., Brown, W.P. and Wilkes, J.G., J. Phys. C: Solid State Phys., 17, 6253 (1984)Google Scholar
12. Ham, F.S., J. Phys. Chem. Solids 6, 335 (1958).Google Scholar
13. Weber, E.R., Appl. Phys. A30, 1 (1983).Google Scholar
14. Mikkelsen, J.C. Jr. , in Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr., Peaton, S.J., Corbett, J.W. and Pennycook, S.J. (Materials Research Society, Pittsburgh, 1986), p. 19.Google Scholar
15. Gilles, D., Weber, E.R., Hahn, S., Monteiro, O.R. and Cho, K., in “Semiconductor Silicon”, edited by Huff, H.R., Abe, T. and Kolbesen, B. (Electrochemical Society, Pennington, NJ, 1990), p. 697.Google Scholar
16. McHugo, S.A., Weber, E.R., Mizuno, M. and Kirschts, F.G., to be published in Appl. Phys. Lett., May 22, 1995 Google Scholar