Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T05:35:28.207Z Has data issue: false hasContentIssue false

The Study of Defects in Metals Using High Resolution Transmission Electron Microscopy and Atomistic Calculations

Published online by Cambridge University Press:  21 February 2011

M. J. Mills
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
M. S. Daw
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
Get access

Abstract

The coupling of HRTEM with atomistic calculations is described for the study of grain boundaries and dislocations in aluminum. HRTEM images of the Σ9 (221) [110] grain boundary are compared with molecular statics calculations using both the Embedded Atom Method (EAM) and two pair potentials. Comparison between observed and simulated images are shown to serve as a stringent test of the theoretical methods. Atomistic calculations can in turn provide threedimensional information about the defect structure. Using the EAM, it is also possible to account for the effects of thin foil geometries on the minimim energy configuration of defects. While these effects are found to be minimal for grain boundary structures, the influence of the thin-foil geometries on the core structure of the 60° dislocation in aluminum is discussed. These comparisons indicate that the EAM function provides a good description of grain boundary structures, but fails to reproduce the observed dislocation core structure due to a low predicted value of the intrinsic stacking fault energy (SFE) on the (111). In contrast, the pair potentials used in this study provide reasonable SFE values, but appear to be less accurate for the prediction of the Σ9 (221) [110] grain boundary structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pond, R. C., Smith, D. A. and Vitek, V., Acta Metall., 27, 235 (1979).Google Scholar
2. Vitek, V., Crystal Lattice Defects, 5, 1.Google Scholar
3. Paidar, V., Yamaguchi, M., Pope, D. P. and Vitek, V., Phil Mag. A, 45, 883 (1982).Google Scholar
4. Pond, R. C. and Vitek, V., Proc. R. Soc. Lond. B, 357, 453 (1977).Google Scholar
5.. Krakow, W., Wetzel, J. T. and Smith, D. A., Phil Mag., 53, 739 (1986).Google Scholar
6. Cosandey, F., Chan, S. W. and Stadelmann, P., Scripta Metall., 22, 1093 (1988).Google Scholar
7. Dahmen, U., Hetherington, C. J. D., O'Keefe, M. A., Westmacott, K. H., Mills, M. J., Daw, M. S. and Vitek, V., submitted for publication in Phys. Rev. Lett. (1990).Google Scholar
8. Dagens, L., Rasolt, M. and Taylor, R., Phys. Rev. B, 11, 2726 (1975).Google Scholar
9. Baskes, M. I. and Melius, C. F., Phys. Rev. B, 20, 3197 (1979).Google Scholar
10. Daw, M. S. and Baskes, M. I., Phys. Rev.B,29, 6443 (1984).Google Scholar
11. Voter, A. F. and Chen, S. P., MRS Proceedings, 82, 175 (1987).Google Scholar
12. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev.B 33, 7983 (1986).Google Scholar
13. Stadelmann, P., Ultramicrosopy, 21, 131 (1987).Google Scholar
14. Mills, M. J., Thomas, G. J., Daw, M. S. and Cosandey, F., to be published in MRS Proceedings (1990).Google Scholar
15. Hazzeldine, P. M., Karnthaler, H. P. and Wintner, E., Phil Mag. A, 32, 81 (1975).Google Scholar
16. Mills, M. J. and Stadelmann, P., Phil Mag. A, 60, 355 (1989).Google Scholar
17. Thomas, G. J., Mills, M. J. and Cosandey, F., unpublished research.Google Scholar
18. Vitek, V., Scripta Metall., 9, 611 (1975).Google Scholar