Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:08:05.980Z Has data issue: false hasContentIssue false

Study of Carbon Nanotubes Under High Pressure

Published online by Cambridge University Press:  10 February 2011

J. Tang
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305-0047, Japan
L.C. Qin
Affiliation:
JST-ICORP Nanotubulite Project c/o NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8501, Japan
A. Matsushita
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305-0047, Japan
T. Kikegawa
Affiliation:
Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba 305-0801, Japan
M. Yudasaka
Affiliation:
JST-ICORP Nanotubulite Project c/o NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8501, Japan
S. Bandow
Affiliation:
JST-ICORP Nanotubulite Project c/o Department of Physics, Meijo University, Tempaku-ku, Nagoya 468-8502, Japan
S. Iijima
Affiliation:
JST-ICORP Nanotubulite Project c/o NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8501, Japan JST-ICORP Nanotubulite Project c/o Department of Physics, Meijo University, Tempaku-ku, Nagoya 468-8502, Japan
Get access

Abstract

The elastic behavior and structural changes of single-walled carbon nanotubes under hydrostatic pressure produced by a gasketed diamond anvil cell has been studied using in situ synchrotron x-ray diffraction. The compaction of the raft-like bundles of single-walled carbon nanotube showed a linear behavior up to 1.5 GPa pressure and the volume compressibility deduced from the experimental data is 0.024 GPa−1. The elastic deformation is attributed to the combination of a reduction in the inter-tubular distance and the polygonization of the otherwise circular nanotube sections.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Overney, G., Zhong, W., and Tomanek, D., Z. Phys. D27, 93 (1993).Google Scholar
3. Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M., Nature 381, 678 (1996).Google Scholar
4. Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
5. Iijima, S., Brabec, C., Maiti, A., and Bernholc, J., J. Chem. Phys. 104, 2089 (1996).Google Scholar
6. Tersoff, J. and Ruoff, R.S., Phys. Rev. Lett. 73, 676 (1994).Google Scholar
7. Chesnokov, S.A., Nalimova, V.A., Rinzler, A.G., Smalley, R.E., and Fischer, J.E., Phys. Rev. Lett. 82, 343 (1999).Google Scholar
8. Venkateswaran, U.D., Rao, A.M., Richter, E., Menon, M., Rinzler, A., Smalley, R.E., and Eklund, P.C., Phys. Rev. B 59, 10928 (1999).Google Scholar
9. Qin, L.C. and Iijima, S., Chem. Phys. Lett. 269, 65 (1997).Google Scholar
10. Qin, L.C., Iijima, S., Kataura, H., Maniwa, Y., Suzuki, S., and Achiba, Y., Chem. Phys. Lett. 268, 101 (1997).Google Scholar
11. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science 273, 483 (1996).Google Scholar
12. Charlier, J.-C., Lambin, Ph., and Ebbesen, T.W., Phys. Rev. B 54, R8377 (1996).Google Scholar