Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T19:45:24.573Z Has data issue: false hasContentIssue false

Study of Band Alignment at the Interface between CBD-CdS and CIGS grown by H2O-introduced co-evaporation

Published online by Cambridge University Press:  01 February 2011

Norio Terada
Affiliation:
[email protected], Kagoshima University, Nano Structure and Advanced Materials, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan, +81-99-285-7782, +81-99-285-7782
Hirotake Kashiwabara
Affiliation:
[email protected], Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Kazuya Kikunaga
Affiliation:
[email protected], Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Shimpei Teshima
Affiliation:
[email protected], Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Tetsuji Okuda
Affiliation:
[email protected], Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
Shigeru Niki
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Keiichiro Sakurai
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Akimasa Yamada
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Koji Matsubara
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Shogo Ishizuka
Affiliation:
[email protected], Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Get access

Abstract

For understanding the origin of the improvements of properties in the CIGS-based cells, of which the CIGS absorber has been fabricated by H2O-introduced co-evaporation [CIGS-H2O], band alignment at the interfaces between chemical bath deposited CdS and CIGS-H2O with Ga substitution ratio ~ 40 % has been studied by photoemission and inverse photoemission spectroscopy. The CdS layer over the CIGS-H2O showed an identical electronic structure with that of CdS on the conventionally grown CIGS; band gap energy of 2.3 ~ 2.4 and a location of conduction band minimum (CBM) and valence band maximum (VBM) relative to Fermi level were + 0.75 eV and -1.6 ~ -1.7 eV, respectively. In the interface region, decreases of CBM and a rise of VBM were observed. Total amount of the decrease of CBM over the interface was 0.2 ~ 0.3 eV. XPS measurements of the core-level signals over the interface showed a small upward bend bending of 0.1 ~ 0.2 eV. Consequently, the conduction band offset (CBO) and valence bad offset (VBO) at the CBD-interface over the CIGS-H2O (Ga~40%) are about +0.1, and 0.9 ~ 1.1 eV, respectively. This positive CBO is contrast with a slightly negative CBO at the interface between CBD-CdS/conventionally grown CIGS with Ga ~ 40 % measured previously. These results indicate that the H2O introduction is effective to extend the upper limit of the Ga substitution ratio where the Type-I conduction band alignment is maintained. The observed band alignments are consistent with the rise of Voc and efficiency in the CIGS-H2O based cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Voorwinden, G., Kiese, R., and Powalla, M., Thin Solid Films 431-432, 538 (2003).Google Scholar
2. Contreras, M. A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Keane, J., Wang, L., and Noufi, R., Sol. Energy Mater. Sol. Cells 41/42, 231 (1996).Google Scholar
3. Herberholz, R., Nadenau, V., Ruhle, U., Koble, C., Schock, H. W., and Dimmeler, B., Sol. Energy Mater. Sol. Cells 49, 227 (1997).Google Scholar
4. Siebentritt, S., Thin Solid Films 403-404, 1 (2002).Google Scholar
5. Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H., and Hamakawa, Y., J. Appl. Phys. 89, 8327 (2001).Google Scholar
6. Schmid, D., Ruckh, M., and Schock, H. W., Sol. Energy Mater. Sol. Cells 41/42, 281 (1996).Google Scholar
7. Rau, U., and Schock, H. W., Appl. Phys. A 69, 131 (1999).Google Scholar
8. Schulmeyer, T., Hunger, R., Klein, A., Jaegermann, W., and Niki, S., Appl. Phys. Lett. 84, 3067 (2004).Google Scholar
9. Kronik, L., Burstein, L., Leibovitch, M., Shapira, Y., Gal, D., Moons, E., Beier, J., Hodes, G., Cahen, D., Hariskos, D., Klenk, R., and Schock, H.W., Appl. Phys. Lett. 67, 1405 (1995).Google Scholar
10. Morkel, M., Weinhardt, L., Lohmuller, R., Heske, C., Umbach, E., Riedl, W., Zweigart, S., and Karg, F., Appl. Phys. Lett. 79, 4482 (2001).Google Scholar
11. Terada, N., Widodo, R. T., Itoh, K., Kong, S. H., Kashiwabara, H., Okuda, T., Obara, K., Niki, S., Sakurai, K., Yamada, A., and Ishizuka, S., Thin Solid Films 480-481, 183 (2005).Google Scholar
12. Kong, S. K., Kashiwabara, H., Ohki, K., Itoh, K., Okuda, T., Niki, S., Sakurai, K., Yamada, A., Ishizuka, S. and Terada, N., Materials Research Society Symposium 865, 155 (2005).Google Scholar
13. Ishizuka, S., Sakurai, K., Yamada, A., Shibata, H., Matsubara, K., Yonekura, M., Nakamura, S., Nakanishi, H., Kojima, T. and Niki, S., Jpn. J. Appl. Phys. 44, L629 (2005).Google Scholar
14. Ishizuka, S., Sakurai, K., Yamada, A., Matsubara, K., Shibata, H., Yonemura, M., Nakamura, S., Nakanishi, H.,Kojima, T., and Niki, S., Proc. 4th World Conf. Photovoltaic Energy Conversion, 338 (2006).Google Scholar