Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T08:30:57.183Z Has data issue: false hasContentIssue false

Study of a Cu-Al-Mn Shape Memory Alloy Produced by Plasma Melting Followed by Injection Molding

Published online by Cambridge University Press:  30 July 2014

Francisco Fernando Roberto Pereira
Affiliation:
Universidade Federal de Campina Grande (UFCG), 882 Aprígio Veloso Avenue, Bairro Universitário, Zip Code: 58429-140, Campina Grande – PB, Brazil. Laboratório Multidisciplinar de Materiais e Estruturas Ativas (LaMMEA), Mechanical Engineering Department.
Maria Goretti Ferreira Coutinho
Affiliation:
Universidade Federal de Campina Grande (UFCG), 882 Aprígio Veloso Avenue, Bairro Universitário, Zip Code: 58429-140, Campina Grande – PB, Brazil. Laboratório Multidisciplinar de Materiais e Estruturas Ativas (LaMMEA), Mechanical Engineering Department.
Bruno Moura Miranda
Affiliation:
Universidade Federal de Campina Grande (UFCG), 882 Aprígio Veloso Avenue, Bairro Universitário, Zip Code: 58429-140, Campina Grande – PB, Brazil. Laboratório Multidisciplinar de Materiais e Estruturas Ativas (LaMMEA), Mechanical Engineering Department.
Carlos José de Araújo
Affiliation:
Universidade Federal de Campina Grande (UFCG), 882 Aprígio Veloso Avenue, Bairro Universitário, Zip Code: 58429-140, Campina Grande – PB, Brazil. Laboratório Multidisciplinar de Materiais e Estruturas Ativas (LaMMEA), Mechanical Engineering Department.
Get access

Abstract

Shape Memory Alloys (SMA) are characterized by the capacity to recover a permanent deformation after being heated above a critical temperature called Final Austenite Temperature (Af). The Ni-Ti SMA are the most commercially used, however recent studies showed that the Cu-Al-Mn SMA present significant shape recovery and mechanical properties, showing a strong potential for developing new applications. In this context, the main goal of this work is to manufacture a Cu-Al-Mn SMA through a plasma melting process followed by injection molding of liquid metal and then characterize the samples, using the following techniques: Optical Microscopy (OM), Differential Scanning Calorimetry (DSC), Electrical Resistance as a function of Temperature (ERT) tests, Dynamical Mechanical Analysis (DMA) and Microhardness (MH).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Otsuka, K., Wayman, C.M.. Shape Memory Materials. 1ª ed. Cambridge University Press, Cambridge, UK, pp. 284 (1998).Google Scholar
Hodgson, D. E., Wu, H. M., Biermann, R. J.. Shape Memory Alloys, Metals Handbook. Vol. 2. pp. 897902 (1990).Google Scholar
Lu, X., Chen, F., Li, W., Zheng, Y.. Journal of Alloys and Compounds, Vol. 480, pp. 608611 (2009).CrossRefGoogle Scholar
de Araújo, C.J., Gomes, A. A. C., Silva, J. A., Cavalcanti, A. J. T., Reis, R. P. B., Gonzalez, C. H.. Journal of Materials Processing Technology, Vol. 209, pp. 36573664 (2009).CrossRefGoogle Scholar