Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:38:10.079Z Has data issue: false hasContentIssue false

Studies of Long Term Aging Effects on the Magneto-Optic Properties of Amorphous Tb-Fe Films

Published online by Cambridge University Press:  21 February 2011

N. Watanabe
Affiliation:
Royal Institute of Technology, Dept. of Solid State Physics, S-100 44 Stockholm, Sweden
K. Tsushima
Affiliation:
Royal Institute of Technology, Dept. of Solid State Physics, S-100 44 Stockholm, Sweden
R. Malmhal
Affiliation:
Institute of Optical Research, S-100 44 Stockholm, Sweden
K. V. Rao
Affiliation:
Royal Institute of Technology, Dept. of Solid State Physics, S-100 44 Stockholm, Sweden
Get access

Abstract

The real long term aging phenomena at ambient temperatures, over 8 years, of amorphous TbFe thin films protected with a SiOx layer has been investigated, using Kerr magneto-optic effect. Our data indicate significant changes in the coercivity values for films with less than 500A thickness. In thicker films structure/stress relaxation effects appear to be significant. Studies of the stability of these films under accelerated aging are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kryder, M.H., J.Appl.Phys. 57, 3913 (1985).Google Scholar
2. Bloomberg, D.S. and Connell, G.A.N., Proc.IEEE Compcon, 32 (1985).Google Scholar
3. Chaudhari, P., Cuomo, J.J. and Gambino, R.J., Appl.Phys.Lett. 22, 337 (1973).Google Scholar
4. Chaudhari, P., Cuomo, J.J. and Gambino, R.J., IBM J.Res.Dev. 17, 66 (1973).Google Scholar
5. Imamura, N., Mimura, Y. and Kobayashi, T., IEEE Trans.Mag. MAG–12, 55 (1976).Google Scholar
6. Chen, Tu, Cheng, D. and Charlan, G.B., IEEE Trans.Mag. MAG–16, 1194 (1980).Google Scholar
7. Mcguire, T.R., Gambino, R.J., Bell, A.E. and Sprokel, G.J., J.Mag.Mag.Matt. 54–57, 1387 (1986).Google Scholar
8. Luborsky, F.E., Mater. Res. Symp. Proc. 80, 375 (1987).Google Scholar
9. Tsunashima, S., Shinoda, T., Miyatake, H. and Uchiyama, S., J.Appl.Phys. 51, 5901 (1980).Google Scholar
10. Hoshi, Y., Naoe, M. and Yamanaka, S., J.Appl.Phys. 53, 2344 (1982).Google Scholar
11. Luborsky, F.E., J.Appl.Phys. 57, 15 (1985).Google Scholar
12. Luborsky, F.E., Furey, J.T., Skoda, R.E. and Wagner, B.C., IEEE Trans. Mag. MAG–21 1618 (1985).Google Scholar
13. Yinnon, H.Y. and Uhlmann, D.R., J.Non-Cryst.Solids 54, 253 (1983).Google Scholar
14. Niihara, T., Kirino, F., Ogihara, N., Koyama, E., Sudou, R., Shigematsu, K. and Ohta, N., Intermag'88 (preprint)Google Scholar
15. Niihara, T., Horigome, S., Sudou, R., Suzuki, H., Yoshihiro, M. and Ohta, N., SPIE Optical Storage Technology and Applications, 899, p.166 (1988).Google Scholar
16. Bernstein, P. and Gueugnon, C., J.Appl.Phys. 55 1760 (1984).Google Scholar
17. Bernstein, P. and Gueugnon, C., IEEE Trans.Mag. MAG–21 1613 (1985).Google Scholar
18. Hong, M., Bacon, D.D., van Dover, R.B., Gyorgy, E.M., Dillon, J.F. Jr., and Albiston, S.D., J.Appl.Phys. 57 3900 (1985).Google Scholar
19. Ohta, N. (private communication).Google Scholar
20. Chen, Tu, Malmhall, R. and Charlan, G.B., J.Appl.Phys. 53(3), 2356 (1982)Google Scholar
21. Malmhall, R. and Chen, Tu, J.Appl.Phys. 53(11),7843 (1982)Google Scholar