Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:40:48.212Z Has data issue: false hasContentIssue false

Studies of a Phenomenological Model of Ion Mixing

Published online by Cambridge University Press:  28 February 2011

Y. -T. Cheng
Affiliation:
California Institute of Technology, Pasadena, CA 91125
T. W. Workman
Affiliation:
California Institute of Technology, Pasadena, CA 91125
M -A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
W. L. Johnson
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The phenomenological model of ion mixing based on the concept of a thermal spike and chemically biased diffusion is further developed. Experimental results available to date are compared with the model.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheng, Y.-T., Van Rossum, M., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 45, 185 (1984).CrossRefGoogle Scholar
2. Van Rossum, M., Cheng, Y.-T., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 46, 610 (1985).CrossRefGoogle Scholar
3. Johnson, W. L., Cheng, Y.-T., Van Rossum, M., and Nicolet, M-A., Nucl. Instrum. Methods B 7/8, 657 (1985).CrossRefGoogle Scholar
4. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182/183, 25 (1981).CrossRefGoogle Scholar
5. Matteson, S., Appl. Phys. Lett. 39, 288 (1981).CrossRefGoogle Scholar
6. Haff, P. K. and Switkowski, Z. E., J. Appl. Phys. 48, 3383 (1977).CrossRefGoogle Scholar
7. Seitz, F. and Koehler, J. S., Progress in Solid State Physics, 2, 305 (1956)Google Scholar
8. Thompson, D. A., Rad. Effects 56, 105 (1981).CrossRefGoogle Scholar
9. Sigmund, P., Appl. Phys. Lett. 25, 169 (1974).CrossRefGoogle Scholar
10. Vineyard, G. H., Rad. Effects 29, 245 (1976).CrossRefGoogle Scholar
11. Seitz, F., Adv. Phys. 1, 42 (1952)CrossRefGoogle Scholar
12. Simmons, R. O. and Balluffi, R. W., Phys. Rev. 129, 1533 (1963).CrossRefGoogle Scholar
13. Doyama, M. and Koehler, J. S., Acta Metall. 24, 871 (1976).CrossRefGoogle Scholar
14. Workman, T. W., Cheng, Y.-T., Johnson, W. L., and Nicolet, M-A., submitted to Appl. Phys. Lett.Google Scholar
15. Heat of mixing for A50B50, Miedema, A. R., Philips Tech. Rev. 36, No. 8, 217 (1976).Google Scholar
16. Cohesive energy for A50B50 calculated from ΔHeoh = 1/2(ΔH°A + ΔH°B) + ΔHm [3], where ΔH°A and ΔH° B are the cohesive energies of the corresponding solids A and B, obtained from C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, NY, 1976) and from R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. K. Kelley eds., Selected Values of the Thermodynamical Properties of the Elements (ASMT, Metal Parks, Ohio, 1973).Google Scholar
17. Average energy deposited per unit length due to nuclear collision at the interface of A and B, Biersach, J. P. and Ziegler, J. F., in Ion Implantation Techniques edited by Ryssel, H. and Glawisching, H. (Springer, Berlin, 1982), p. 122.CrossRefGoogle Scholar
18. Average atomic density for A50B50 obtained from averaging the atomic densities of the pure elements A and B.Google Scholar
19. Cheng, Y.-T., Nicolet, M-A., and Johnson, W. L., submitted to Phys. Rev. Lett.Google Scholar
20. Mandelbrot, B. B., The Fractal Geometry of Nature (W. H.Freeman and Company, New York, 1983).CrossRefGoogle Scholar