Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:58:51.321Z Has data issue: false hasContentIssue false

The Structure of Si and Ge Deposited by Ion Beam Sputtering

Published online by Cambridge University Press:  22 February 2011

H. Windischmann
Affiliation:
The Standard Oil Company (Ohio), 4440 Warrensville Center Rd., Cleveland, Ohio 44128
J. M. Cavese
Affiliation:
The Standard Oil Company (Ohio), 4440 Warrensville Center Rd., Cleveland, Ohio 44128
R. W. Collins
Affiliation:
The Standard Oil Company (Ohio), 4440 Warrensville Center Rd., Cleveland, Ohio 44128
R. D. Harris
Affiliation:
The Standard Oil Company (Ohio), 4440 Warrensville Center Rd., Cleveland, Ohio 44128
J. Gonzalez-Hernandez
Affiliation:
Energy Conversion Devices, Inc., 1675 Maple Pd., Troy, Michigan 48084
Get access

Abstract

The crystallinity for silicon and germanium films deposited by ion beam sputtering (IBS) as a function of substrate temperatures was determined using Raman spectroscopy, spectroscopic ellipsometry, electrical conductivity and x-ray diffraction measurements. The results show that IBS silicon crystallizes between 300–350°C while germanium crystallizes between 20–200°C. Reasonably good agreement is obtained among the four distinctively different characterization techniques in identifying the onset of crystallinity. A direct relationship is observed between the substrate temperature required for crystallization and the log of the operating pressure for various deposition techniques. Energetic particle stimulation during film growth appears to reduce the crystallization temperature at a given operating pressure. Raman data show that the crystallization temperature depends on the deposition rate. A graded structure is observed in films deposited above 300°C, probably due to oxygen contamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, P. A., Brodsky, M. H., Kaplan, D., Lepine, D., Phys. Rev. B, 18, 3059 (1978).CrossRefGoogle Scholar
2. Blum, N. A. and Feldman, C., J. Non. Cryst. Solids 11, 242 (1972).Google Scholar
3. Fang, P. H., Bai, P., Kinnier, J. H., Huan, Z., Schubert, C.C., J. Non. Cryst. Solids 59, 819 (1983).CrossRefGoogle Scholar
4. Green, J. E. and. Mei, L., Thin Solid Films 37, 429 (1976).Google Scholar
5. Hernandez, J. G. and Tsu, R., Appl. Phys. Letters 42, 90 (1983).Google Scholar
6. Morin, F. and Morel, M., Appl. Phys. Letters 39, 686 (1979).CrossRefGoogle Scholar
7. Anderson, R. M., J. Electrochem. Soc. 120, 1540 (1973).Google Scholar
8. Janai, M., AlIred, D. D., Booth, D. C. Seraphin, B. O., Solar Energy Mat. 1, 11 (1979).Google Scholar
9. Kamins, T. I., J. Electrochem. Soc. 125, 927 (1978).Google Scholar
10. Gonzalez-Hernandez, J., Martin, D.. Chao, S.S., and Tsu, R., AppI. Phys. Lett. 45, 101 (1984).Google Scholar
11. Kamins, T. I., Mandurah, M.M., and Saraswat, K.C., J. Electrochem. Soc. 125, 927 (1978).CrossRefGoogle Scholar
12. Neugebauer, C-., Handbook of Thin Film Technology, Eds. by Maissel, L.I. and Glang, R., McGraw-Hill, N.Y., Chapter 8, (1970).Google Scholar
13. Marinov, M., Thin Solid Films 46, 267 (1977).Google Scholar
14. Eltoukhy, A. H. and Green, J. E.,. Appl. Phys. 51, 4450 (1980).Google Scholar
15. Weissmantel, C., J. Vac. Sci. Tech. 18, 179 (1981).CrossRefGoogle Scholar
16. Moss, S. C., Flynn, P., Bauer, L.O., Phi-. Mag. 27, 441 (1973).Google Scholar
17a. Adamsky, R. F., Behrndt, K.H., Brogan, W.T., J. Vac. Sci. and Tech., 6, 542, (1969).Google Scholar
17b. Barna, A., Barna, P. B. and Pocza, J.F., J. of Non-Crystalline Solids, 8–10, 36, (1972).Google Scholar
18. Booth, D. C., AlIred, D.D. and Seraphin, B.O., Solar Energy Mol. 2, 107, (1979).Google Scholar
19. Kahn, J. T., J. Appl. Phys. 4, 14, (1973).Google Scholar
20. Radman, D. A. and Cahan, B.D., J. Opt. Soc. Am. 71, 1546 (1981)Google Scholar
21. Aspnes, D. E., J. Opt. Soc. Am. 64, 812(1975).CrossRefGoogle Scholar
22. Aspnes, D. E. and Studna, A. A., Ph-ys. Rev. B 27, 985, (1983).Google Scholar
23. Mott, N. F., Phil Mag. 19, 835 (1969).Google Scholar
24. Mott, N. F. and Davis, E. A., Electronic Processes in Noncrystalline Materials, Clarendon Press.,Oxford, (1979).Google Scholar
25. Donnay, J.D.H. and Harker, D., Am. Minerologist 22, 466 (1937).Google Scholar
26. Azanoff, L., in Elements of X-Ray Crystallography, McGraw-Hill, N.Y. Chapt. 20, (1968).Google Scholar
27. Bagley, B. G., Aspnes, D.E., Mogab, A.C., Appl. Phys. Lett. 38, 56 (1981).CrossRefGoogle Scholar
28. Tsu, R., Hernandez, J.G., Doehler, J., and Ovshinsky, S.R., Solid State Comm. 46, 79 (1983).Google Scholar
29. Tsu, R., Hernandez, J.G., and Pollak, F.H., J. of Non Cryst. Solids 66, 109 (1981).Google Scholar
30. Richter, H., Wang, Z. P. and Ley, L., Solid State Comm. 39,625 (1981)Google Scholar
31. Nagasima, N., Kubota, N., J. Vac. Sci. Tech. 14, 54 (1977).Google Scholar
32. Fang, P.H., Bai, P., Kinnier, J.H., Huan, Z. and Schubert, C.C., J. Non. Cryst. Solids, 59 & 60, 819 (1983)Google Scholar
33. Thomas, P. A., Brodsky, M.H., Kaplan, D. and Lepine, D., Phys. Rev. B 18, 3059 (1978).Google Scholar
34. Chapman, B. N. and Campbell, D. S., J. Phys. C. 2, 200 (1969).CrossRefGoogle Scholar
35. Scher, H. and Zallen, R., J. Chem. Phys. 53, 3759 (1970).CrossRefGoogle Scholar