Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T23:17:33.744Z Has data issue: false hasContentIssue false

Structure of microcrystalline solar cell materials: What can we learn from electron microscopy?

Published online by Cambridge University Press:  01 February 2011

M. Luysberg
Affiliation:
Institut of Solid State Research and Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich,Germany
L. Houben
Affiliation:
Institut of Solid State Research and Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich,Germany
Get access

Abstract

Microcrystalline silicon and its group IV alloys are widely explored as absorber layers in thin film solar cells. Despite the extended research in recent years the fundamental understanding of the relation between macroscopical properties, i.e. electrical and optical properties, and the microstructure is poor. Clearly, the structure of microcrystalline materials, consisting of a phase mixture between “amorphous” material, crystalline grains, and voids, is complex. To demonstrate the strengths and limitations of transmission electron microscopy on microcrystalline materials, we will discuss different techniques employed to investigate grain sizes and morphologies, crystallographic orientations, amorphous volume fractions, and lateral arrangements of crystallites. In particular, we focus on the potential for analyzing the structure of grain boundaries and the amorphous phase in microcrystalline silicon and silicon carbide by the most advanced techniques in atomic resolution imaging in the transmission electron microscope.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H., and Scheib, M., Appl. Phys. Lett. 65. 2588 (1994).10.1063/1.112604Google Scholar
2 Meier, J., Vallat-Sauvain, E., Dubail, S., Kroll, U., Dubail, J., Golay, S., Feitknecht, L., Torres, P., Fay, S., Fischer, D., and Shah, A.. Solar Energy Mater. Solar Cells 66, 73 (2001).10.1016/S0927-0248(00)00160-4Google Scholar
3 Saito, K., Sano, M., Matuda, K., Kondo, T., Nishimoto, T., Ogawa, K., and Kajita, I., Proceedings of Second World Conference PVSEC, Vienna, Austria 351 (1998).Google Scholar
4 Rath, J.K., Tichelaar, F.D., Meiling, H., and Schropp, R.E.I.: Mater. Res. Soc. Symp. Proc. 507, 879 (1998).10.1557/PROC-507-879Google Scholar
5 , Ledermann, Weber, U., Mukherjee, C. and Schröder, B., Thin Solid Films 395, 61 (2001).10.1016/S0040-6090(01)01208-1Google Scholar
6 Klein, S., Wolff, J., Finger, F., Carius, R., Wagner, H., and Stutzmann, M., Jpn. J. Appl. Phys, 41, L10 (2002).10.1143/JJAP.41.L10Google Scholar
7 Luysberg, M., Hapke, P., Finger, F., and Carius, R., Phil. Mag. A, 75, 31 (1997)10.1080/01418619708210280Google Scholar
8 Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., and Wagner, H., Phil. Mag. A, 77, 1447 (1998).10.1080/01418619808214262Google Scholar
9 Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., and Wagner, H., Solar Energy Mater. Solar Cells 62, 97 (2000).10.1016/S0927-0248(99)00140-3Google Scholar
10 Klein, S., Carius, R., Finger, F., and Houben, L., Thin Solid Films (2005) in pressGoogle Scholar
11 Houben, L., Luysberg, M., Carius, R., Phys. Rev. B 67, 045312 (2003).10.1103/PhysRevB.67.045312Google Scholar
12 Jia, C. L., Lentzen, M., and Urban, K., Science 229, 870 (2003).10.1126/science.1079121Google Scholar
13 Thust, A., Coene, W. M. J., Beeck, M. Op de and Dyck, D. Van, Ultramicroscopy 64, 211 (1996).10.1016/0304-3991(96)00011-3Google Scholar
14 Coene, W. M. J., Thust, A., Beeck, M. Op de and Dyck, D. Van Ultramicroscopy 64, 109 (1996).10.1016/0304-3991(96)00010-1Google Scholar