Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T07:58:51.833Z Has data issue: false hasContentIssue false

Structure Evolution in Plated Cu Films

Published online by Cambridge University Press:  01 February 2011

D.P. Field
Affiliation:
School of Mech.and Matls. Eng, Washington State University, Pullman, WA 99164-2920 USA
NJ Park
Affiliation:
School of Mech.and Matls. Eng, Washington State University, Pullman, WA 99164-2920 USA Kumoh National Institute of Technology, Gumi, Gyungbuk, 730-701 Korea
PR Besser
Affiliation:
Advanced Micro Devices, Sunnyvale, CA 94088-3453 USA
JE Sanchez
Affiliation:
Unity Semiconductor, Sunnyvale, CA 94085 USA
Get access

Abstract

Structure evolution in plated Cu films is a function of sublayer stacking, film thickness, plating chemistry, plating parameters, and temperature. The present work examines grain growth and texture evolution in annealed plated Cu on a 25 nm thick Ta sublayer for films of 480 and 750 nm in thickness. These results are compared against those obtained from damascene Cu lines fabricated from a similar process, using a series of line widths. The results show that the initial structures of the plated films are similar, with slightly weaker (111) texture, a higher fraction of twin boundaries, and larger grains in the thicker films. The microstructure of the Cu within the trench constraints is a strong function of line geometry with the propensity for twin boundary development controlling structural evolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Perez-Prado, M.T., and Vlassak, J.J., Scripta Mater., 47 (2002) p.817.Google Scholar
2. Koike, J., Wada, M., Sanada, M., and Maruyama, K., Appl. Phys. Lett., 81 (2002) p.1017.Google Scholar
3. Sekiguchi, A., Koike, J., and Maruyama, K., Appl. Phys. Lett., 83 (2003) p.1962.Google Scholar
4. Sekiguchi, A., Koike, J., Kamiya, S., Saka, M., and Maruyama, K., Appl. Phys. Lett., 79 (2001) p.1264.Google Scholar
5. Abe, K., Harada, Y., Yoshimaru, M., and Onoda, H., J. Vac. Sci. Technol., B 22 (2004) p.721.Google Scholar
6. Ryu, C., Loke, A.L.S., Nogami, T., and Wong, S.S., Proc. IEEE Int. Reliability Physics Symp., (1997) p.201.Google Scholar
7. Vanasupa, L., Joo, Y.C., Besser, P. R., and Pramanick, S., J. Appl. Phys., 85 (1999) p.2583.Google Scholar
8. Ji, Y., Zhong, T., Li, Z., Wang, X., Luo, D., and Xia, Y., Liu, Z., Microelectronic Engineering, 71 (2004) p.182.Google Scholar
9. Thompson, C.V., Annual Review of Materials Science, 20 (1990) p.245.Google Scholar
10. Kwon, K.W., Ryu, C., Sinclair, R., and Wong, S.S., Appl. Phys. Lett, 71 (1997) p.3069.Google Scholar
11. Field, D.P., Kononenko, O.V., and Mateev, V.N., J. Electr. Mat, 31 (2002) p.40.Google Scholar
12. Besser, P.R., Zschech, E., Blum, W., Winter, D., Ortega, R., Rose, S., Herrick, M., Gall, M., Thrasher, S., Tiner, M., Baker, B., Braeckelmann, G., Zhao, L., Simpson, C., Capasso, C., Kawasaki, H., and Weitzman, E., Journal of Electronic Materials 30 (2001) p.320.Google Scholar
13. Muppidi, T., Field, D.P., Sanchez, J.E. Jr, and Woo, C., Thin Solid Films 471 (2005) p. 63.Google Scholar
14. Park, N.J., Field, DP, Nowell, MM, and Besser, PR, J. Electronic Matls, (2005) to be published.Google Scholar
15. Zielinski, E.M., Vinci, R.P. and Bravman, J.C., J. Appl. Phys, Vol. 76, (1994), p. 4516.Google Scholar
16. Humphreys, F.J., Huang, Y., Brough, I., and Harris, C., J. Microscopy, Vol. 195 (1999), p. 212.Google Scholar