Hostname: page-component-f554764f5-fnl2l Total loading time: 0 Render date: 2025-04-22T10:59:59.883Z Has data issue: false hasContentIssue false

Structure and Magnetic Properties of Epitaxial Ordered FePd (001) Thin Films

Published online by Cambridge University Press:  10 February 2011

V. Gehanno
Affiliation:
Service de Physique des Matériaux et Microstructures / Département de Recherche Fondamentale sur la Matière Condensée / CEA-Grenoble, 38 054 Grenoble cedex 9, France
A. Marty
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques / CNRS, BP 75, 38 042 St Martin d'H`res, France
B. Gilles
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques / CNRS, BP 75, 38 042 St Martin d'H`res, France
Get access

Abstract

Equiatomic FePd (001) thin films have been deposited by Molecular Beam Epitaxy on a Pd (001) surface. We show that the degree of chemical order in the epitaxial layer is highly dependant on the temperature of deposition thus leading to a drastic change in the magnetic properties. At 25°C, while the RHEED oscillations reveal a layer by layer growth, the structural study demonstrates that the disordered phase has grown. In that case, the easy magnetization axis lies in the plane of the layer. At 350°C, the RHEED oscillations show that the growth proceeds bilayer by bilayer. We find that the tetragonal L10 ordered phase is stabilized with its 4-fold symmetry axis along the growth direction and this results in a perpendicularly magnetized thin film. The Transmission Electron Microscopy study reveals the presence of twins and antiphase boundaries in the ordered film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Lodder, J.C., MRS Bulletin 20 (10), 59 (1995).Google Scholar
2. Lairson, B.M., Clemens, B.M., Appl. Phys. Lett. 63, 1438 (1993).Google Scholar
3. Cebollada, A. et al., Phys. Rev. B 50, 3419 (1994).Google Scholar
4. For more information on the CuAu(I)-type structure, see for example: Nix, F.C., Shockley, W., Rev. Mod. Phys. 10, 1 (1938).Google Scholar
5. Miyata, N., Asami, H., Misushima, T., Sato, K., J. Phys. Soc. Jpn 59, 1817 (1990).Google Scholar
6. Zhang, B., Soffa, W.A., Scripta Metallurgica et Materialia 30, 683 (1994).Google Scholar
7. Maham, J.E., Geib, K.M., Robinson, G.Y., Long, R.G., J. Vac. Sci. Technol. A 8, 3692 (1990)Google Scholar
8. Purcell, S.T., Heinrich, B., Arrott, A.S., Phys. Rev. B 35, 6458 (1987).Google Scholar
9. Harris, J.J., Joyce, B.A., Dobson, P.J., Surf. Sci. 108, L444 (1981).Google Scholar
10. Warren, B.E., in X-ray diffraction (Dover Publications, New York, 1990), pp. 206250.Google Scholar
11. Miyata, N., Hagiwara, M., Kunitomo, H., Ohishi, S., Ichiyanagi, Y., Kuwahara, K., Tsuru, K., Kadomatsu, H., Fujiwara, H., J. Phys. Soc. Japan 55, 953 (1986).Google Scholar
12. Dynna, M., Marty, A., Gilles, B., Patrat, G., to be published in Acta Met. Mater.Google Scholar