Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:09:46.609Z Has data issue: false hasContentIssue false

Structure and Electrical Properties of Atomic-scale In-Bi Nanowire Arrays

Published online by Cambridge University Press:  01 February 2011

James Hugh Gervase Owen
Affiliation:
[email protected], Université de Genève, Dept. de Physique de la Matière Condensée, 24 Quai Ernest Ansermet,, Genève, 1211, Switzerland, +41-22-379 35 47
Osamu Kubo
Affiliation:
[email protected], National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
David Bowler
Affiliation:
[email protected], University College London, London Centre for Nanotechnology and Dept. of Physics and Astronomy, Gower St,, London, WC1E 6BT, United Kingdom
Get access

Abstract

The 1-nm-wide Bi nanoline has been proposed as a possible template for the growth of very-high-density arrays of atomic-scale nanowires, grown epitaxially on the technologically important Si(001) surface. Indium reacts with the Bi dimers, forming a unique zigzag atomic chain structure. Simulations of the appearance in STM of the lowest-energy isomer of this structure match experimental filled-states images. Calculation of the LDOS for the single-layer islands, finds that the nanowires are semiconducting, with a band gap smaller than that of the substrate, in good agreement with STS. A delocalised LUMO state is created, which may provide a conduction pathway along the nanowire. We have performed dual-probe STM conduction measurements along the In-Bi nanowires to test this prediction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

1. Miki, K., Owen, J. H. G., Bowler, D. R., Briggs, G. A. D. and Sakamoto, K., Surf. Sci. 421, 397418 (1999).Google Scholar
2. Owen, J. H. G., Miki, K. and Bowler, D. R., J. Mat. Sci. 41, 45684603 (2006).Google Scholar
3. Owen, J. H. G., Bowler, D. R., Kusano, S. and Miki, K., Surf. Sci. Lett. 499, L124–L128 (2002).Google Scholar
4. Owen, J. H. G., Bowler, D. R. and Miki, K., Surf. Sci. Lett. 527, L177183 (2003).Google Scholar
5. Itoh, T., Kashirajima, S., Naitoh, M., Nishigaki, S. and Shoji, F., Appl. Surf. Sci. 244, 161165 (2005).Google Scholar
6. Higai, S. and Ohno, T., Phys. Rev. B 62, R7711 (2000).Google Scholar
7. Palasantzas, G., Ilge, B., Nijs, J. de and Geerligs, L. J., Surf. Sci. 412-413, 509517 (1998).Google Scholar
8. Owen, J. H. G. and Miki, K., Mat. Res. Soc. Proc. 0901–Ra13 (2006).Google Scholar
9. Owen, J. H. G. and Miki, K., Surf. Sci. 600, 29432953 (2006).Google Scholar
10. Owen, J. H. G. and Miki, K., Nanotechnology 17, 430433 (2006).Google Scholar
11. Bowler, D. R., Bird, C. F. and Owen, J. H. G., J.Phys.:Condens. Matter 18, L241–L249 (2006).Google Scholar
12. Miwa, R. H. and Srivastava, G. P., Surf. Sci. 600, 4048 (2006).Google Scholar
13. Owen, J. H. G., Bowler, D. R., Kusano, S. and Miki, K., Phys. Rev. B 72, 113304 (2005).Google Scholar
14. Bowler, D. R. and Owen, J. H. G., J. Phys. Cond. Matt. 14, 6761 (2002).Google Scholar
15. Wang, Y. and Perdew, J. P., Phys. Rev. B 44, 13298 (1991).Google Scholar
16. Kresse, G. and Furthmüller, J., Comp. Mat. Sci. 6, 15 (1996).Google Scholar
17. Tersoff, J. and Hamann, D. R., Phys. Rev. Lett. 50, 1998 (1983).Google Scholar
18. Bunk, O., Falkenberg, G., Seehofer, L., Zeysing, J. H., Johnson, R. L., Nielsen, M., Feidenhansel, R. and Landemark, E., Appl. Surf. Sci. 123-124, 104 (1998).Google Scholar