Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T06:02:15.739Z Has data issue: false hasContentIssue false

Structural studies of chloride-treated RF sputtered Cd1-xMnxTe films

Published online by Cambridge University Press:  01 February 2011

S. L. Wang
Affiliation:
Department of Physics & Astronomy, University of Toledo, Toledo, OH, 43606, USA
S. H. Lee
Affiliation:
Department of Physics & Astronomy, University of Toledo, Toledo, OH, 43606, USA
A. Gupta
Affiliation:
Department of Physics & Astronomy, University of Toledo, Toledo, OH, 43606, USA
A. D. Compaan
Affiliation:
Department of Physics & Astronomy, University of Toledo, Toledo, OH, 43606, USA
Get access

Abstract

Cd1-xMnxTe alloy films with band gaps of 1.6 ∼ 1.8 eV have been deposited by RF magnetron sputtering for solar-cell applications. The films have been treated by chloride vapors to improve the photovoltaic performance. These as-deposited and chloride-treated CdMnTe films have been investigated by Raman spectroscopy, x-ray diffraction (XRD) and scanning electron microscopy (SEM). Raman results indicate that Te and/or TeO2 exists in the annealed samples depending on anneal conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Coutts, T. J., Emery, K. A. and Ward, S., Prog. Photovolt: Res. Appl. 10, 195 (2002).Google Scholar
2. Ringel, S.A., Sudharsanan, R., Rohatgi, A., and Carter, W. B., J. Electron. Mater. 19, 259 (1990).Google Scholar
3. Lee, S. H., Gupta, A., and Compaan, A. D., phy. stat. sol. (c) 1(4), 1042 (2004).Google Scholar
4. Arora, A. K., Bartholomew, D. U., Peterson, D. L. and Ramdas, A. K., Phy. Rev. B 35, 7966 (1987).Google Scholar
5. Dietl, T., Haury, A., and Aubigne, Y. M., Phy. Rev. B 55, R3347 (1997).Google Scholar
6. Maslana, W., Kossacki, P., Bertolini, M., Boukari, H., Ferrand, D., Tatarenko, S., Cibert, J., and Gaj, J. A., Appl. Phys. Lett. 82, 1875 (2003).Google Scholar
7. Rohatgi, A., Ringel, S. A., Sudharsanan, R., Meyers, P. V., Liu, C. H. and Ramanathan, V., Solar Cells, 27, 219 (1989).Google Scholar
8. Touskova, J., Kindl, D., Tousek, J., Thin Solid Films 293, 272 (1997).Google Scholar
9. Lourenco, M. A., Yew, Y. K., Homewood, K. P., Durose, K., Richter, H., Bonnet, D., J. Appl. Phys. 82, 1423 (1997).Google Scholar
10. De, U., Chattopadhya, M. K., Chaudhury, S., Sarkar, A., Sanyal, D., and Dey, T. K., J. Phys. And Chem. Of Solids 61, 1955 (2000)Google Scholar
11. Shin, S. H., Bajaj, J., Moudy, L. A. and Cheung, D. T., Appl. Phys. Lett. 43, 68 (1983).Google Scholar
12. Amirtharaj, P. M., and Pollak, F. H., Appl. Phys. Lett. 45, 789 (1984).Google Scholar
13. Pine, A. S. and Dresselhaus, G., Phys. Rev. B, 5, 4087 (1972).Google Scholar
14. Niles, D. W., Waters, D., Rose, D., App. Surf. Sci., 136, 221 (1998).Google Scholar
15. Westphal, G. H., Rosenberger, F., Cunningham, P. R. and Ames, L. L., J. Chem.Phys. 72, 5192 (1980).Google Scholar
16. Vesnin, Y. I., Russian Chemical Bulletin, International Edition, 51, pp.37 (2002).Google Scholar