Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T05:27:37.924Z Has data issue: false hasContentIssue false

Structural Properties of InAs/AlSb Superlattices

Published online by Cambridge University Press:  15 February 2011

B. Jenichen
Affiliation:
Paul-Drude-Institut ffir Festkbrperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
H. Neuroth
Affiliation:
Paul-Drude-Institut ffir Festkbrperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany
B. Brar
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA
H. Kroemer
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA
Get access

Abstract

Short-period (InAs)6/(AlSb)6 superlattices (SL) with AlAs-like and InSb-like interfaces (IF) grown on a relaxed AlSb buffer layer are studied by X-ray reflectivity and diffractometry measurements. Reflectivity measurements reveal average IF roughnesses between 0.6 and 1.0 nm. Measurements of the diffuse scattering show that the roughness is highly correlated from layer to layer. Triple crystal area scans illustrate that the inhomogeneous deformation of the buffer layer leads to a certain symmetric peak broadening. In the case of AlAs-like IFs an additional broadening of the SL peaks reveals lattice parameter gradients over the superlattice. This asymmetric peak broadening may be attributed to a further relaxation of the superlattice, which is inhomogeneous with depth. The diffusion of As into the AlSb layers leads to a peak shift and modifies the intensity ratios of the different satellite reflections. The best structural quality is achieved for superlattices with InSb-like IFs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakagawa, A., Kroemer, H., and English, J.H., Appl. Phys. Lett. 54, 1893 (1989).Google Scholar
2. Shen, J., Dow, J.D., Ren, S.J., Tehrani, S., Goronkin, H., J. Appl. Phys. 73, 8313 (1993).Google Scholar
3. Tuttle, G., Kroemer, H., and English, J.H., Appl. Phys. Lett. 67, 3032 (1990).Google Scholar
4. Brar, B., Ibbetson, J., Kroemer, H., and English, J.H., Appl. Phys. Lett. 64, 3392 (1994)Google Scholar
5. Spitzer, J., Höpner, A., Kuball, M., Cardona, M., Jenichen, B., Neuroth, H., Brar, B., and Kroemer, H., J. Appl. Phys. 77, 811 (1995).Google Scholar
6. Wormington, M., Bowen, D. K., and Tanner, B. K. in Structure and Properties of Interfaces in Materials, edited by Clark, W.A.T., Dahmen, U., Briant, C.L. (Mat. Res. Soc. Proc. 238, Pittsburgh, PA, 1992) pp. 119124 Google Scholar
7. Nayak, S., Redwing, J. M., Kuech, T. F., Phang, J. H., Savage, D. E., and Lagally, M.G., in Common Themes and Mechanisms of Epitaxial Growth, edited by Fuoss, P., Tsao, J., Kisker, D.W., Zangwill, A., and Kuech, T. (Mat. Res. Soc. Proc. 312, Pittsburgh, PA, 1993) pp. 137143 Google Scholar
8. Bartels, J., Hornstra, J. and Lobeek, D. J. W., Acta Cryst. A42, 539 (1986).Google Scholar
9. DuMond, W. M., Phys. Rev. 52, 872 (1937). W. J. Bartels, J. Vac. Sci. Technol. 1, 338 (1983).Google Scholar
10. Chu, S. N. G., Macrander, A. T., Strege, K. E., and Johnston, W. D., J. Appl. Phys. 57, 249 (1985).Google Scholar
11. Bowen, D. K., Loxley, N., Tanner, B.K., Cooke, L., and Capano, M.A., in Advances in Surface and Thin Film Diffraction, edited by Huang, T.C., Cohen, P.J. and Eaglesharn, D.J. (Mat. Res. Soc. Proc. 208, 1991) pp. 113118.Google Scholar
12. Houghton, D. C., Perovic, D. D., Baribeau, J. M., and Weatherly, C. J., J. Appl. Phys. 67, 1850 (1990).Google Scholar
13. Koppensteiner, E., Hamberger, P., Bauer, G., Holy, V., Kibbel, H., Presting, H., and Kasper, E., Sol. State Electron. 37, 629 (1994).Google Scholar
14. lida, A. and Kohra, K., Phys. Status Solidi A51, 533 (1979).Google Scholar
15. Matthews, J. W., Mader, S., and Light, T. B., J. Appl. Phys. 41, 3800 (1970).Google Scholar
16. Freund, L. B., Bower, A., and Ramirez, C. J., Mat. Res. Symp. Proc. 130, 139 (1989).Google Scholar