Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:14:55.730Z Has data issue: false hasContentIssue false

Structural, Magnetic and Electrochemical Properties of the Spinel LiMn2-yCoyO4 Nanosized Powders

Published online by Cambridge University Press:  26 February 2011

Nourredine Amdouni
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
François Gendron
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Alain Mauger
Affiliation:
[email protected], CNRS, MPPU, 140 rue de Lourmel, Paris, 75015, France
Christian M Julien
Affiliation:
[email protected], University Paris 6, INSP, 140 rue de Lourmel, Paris, 75015, France
Get access

Abstract

We present the synthesis, structure, magnetic properties and electrode behaviour of LiMn2-yCoyO4 (0≤y≤0) spinel oxides prepared by the wet-chemitry via the carboxylic acid route. LiMn2-yCoyO4 samples crystallise with the cubic spinel-like structure (Fd3m S.G.). Optical spectra indicate that the vibrational mode frequencies and relative intensities of the bands are sensitive to the covalency of the (Co,Mn)-O bonds. Magnetic susceptibility and electron spin resonance measurements show the compositional dependence of the magnetic parameters, i.e. Curie temperature, Curie-Weiss constant and Néel temperature, when Mn is substituted by Co. The overall electrochemical capacity of LiMn2-yCoyO4 oxides have been reduced due to the 3d6 metal substitution, however, a more stable charge-discharge cycling performances have been observed when electrodes are charged up to 4.3 V as compared to the performance of the native oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thackeray, M. M., David, W. I. F., Bruce, P. G., Goodenough, J. B., Mater. Res. Bull. 18, 461 (1983).Google Scholar
2. Thackeray, M. M., Prog. Solid State Chem. 25, 1 (1998).Google Scholar
3. Wakihara, M., Mater. Sci. Eng. R 38, 1 (2001).Google Scholar
4. Momchilov, A., Manev, V., Nassalevska, A., J. Power Sources 41, 305 (1993).Google Scholar
5. Barboux, P., Tarascon, J. M., Shokoohi, F. K., J. Solid State Chem. 94, 185 (1991).Google Scholar
6. Prabaharan, S. R. S., Michael, S. S., Julien, C., Intl. J. Inorg. Mater. 1, 21 (1999).Google Scholar
7. Liu, W., Farrington, G. C., Chaput, F., Duhn, B., J. Electrochem. Soc. 143, 879 (1996).Google Scholar
8. Xia, Y., Yoshio, M., J. Electrochem. Soc. 143, 825 (1996).Google Scholar
9. Wakihara, M., Guohua, L., Ikuta, H., Uchida, T., Solid State Ionics 86–88, 907 (1996).Google Scholar
10. Kawai, H., Nagata, M., Tukamoto, H., West, A. R., Electrochim. Solid State Lett. 1, 2123 (1998).Google Scholar
11. West, A. R., Kawai, H., Kageyama, H., Tabuchi, M., Nagata, M., Tukamoto, H., J. Mater. Chem. 11, 1662 (2001).Google Scholar
12. Guohua, L., Ikuta, H., Uchida, T., Wakihara, M., J. Electrochem. Soc. 143, 178 (1996).Google Scholar
13. Julien, C., El-Farh, L., Rangan, S., Massot, M., J. Sol-Gel Sci. & Technol. 15, 63 (1999).Google Scholar
14. Julien, C., Michael, M. S., Ziolkiewicz, S., Intl. J. Inorg. Mater. 1, 29 (1999).Google Scholar
15. Julien, C. M., Ait-Salah, A., Mauger, A., and Gendron, F., Ionics 12, 11 (2006).Google Scholar
16. Hernan, L., Morales, J., Sanchez, L., Santos, J., Solid State Ionics 118, 179 (1999).Google Scholar