Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:47:57.131Z Has data issue: false hasContentIssue false

Structural Investigations of Laser-Crystallized Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  10 February 2011

D. Toet
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Ave., L-271, Livermore CA 94550 e-mail:[email protected]
P.M. Smith
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Ave., L-271, Livermore CA 94550
T.W. Sigmon
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Ave., L-271, Livermore CA 94550
R. Qiu
Affiliation:
Applied Komatsu Technology, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054
T. Takehara
Affiliation:
Applied Komatsu Technology, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054
S. Sun
Affiliation:
Applied Komatsu Technology, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054
C.C. Tsai
Affiliation:
Applied Komatsu Technology, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054
W.R. Harshbarger
Affiliation:
Applied Komatsu Technology, 3101 Scott Blvd., M/S 9155, Santa Clara, CA 95054
Get access

Abstract

We investigated the structure of hydrogenated amorphous silicon, thin films crystallized by short pulses from a XeCl excimer laser at fluences for which total melting of the films occurs. Atomic force microscopy revealed that films prepared using optimized process conditions, leading to hydrogen contents ≤ 5 at.%, are smoother after laser crystallization than those prepared by laser-dehydrogenation. The roughness of the laser-crystallized films increases with their thickness, and can be reduced by multiple exposure. A better smoothing is obtained by partially remelting the films after the first irradiation. Transmission electron microscopy shows that the grains in the laser-crystallized films have sizes that are comparable to the film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] For a review, see Im, J. S. and Sposili, R. S., MRS Bulletin 21, 38 (1996).Google Scholar
[2] Sameshima, T., Usui, S., and Sekiya, M., IEEE Electron Device Lett. 7, 176 (1986).Google Scholar
[3] Brotherton, S. D., McCulloch, D. J., Clegg, J. B., and Gowers, J. P., IEEE Trans. Electron Devices 40, 407 (1993).Google Scholar
[4] Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
[5] Voutsas, T. and Hatalis, M., J. Appl. Phys. 76, 777 (1994).Google Scholar
[6] Miyata, Y., Furuta, M., Yoshioka, T., and Kawamura, T., J. Appl. Phys. 73, 3271 (1994).Google Scholar
[7] Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., Johnson, R. I., Anderson, G. B., Ready, S. E., and Fork, D. K., J. Appl. Phys. 64, 1132 (1994).Google Scholar
[8] Fork, D. K., Anderson, G. B., Boyce, J. B., Johnson, R. I., and Mei, P., Appl. Phys. Lett. 68, 2139 (1996).Google Scholar
[9] Kuriyama, H., Nohda, T., Aya, Y., Kuwahara, T., Wakisaka, K., Kiyama, S., and Tsuda, S., Jpn. J. Appl. Phys. 33, 5657 (1994).Google Scholar
[10] Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1994).Google Scholar
[11] Stiffler, S. R. and Thompson, M. O., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar