Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T08:43:36.349Z Has data issue: false hasContentIssue false

Structural features in fluorite compounds relevant for nuclear applications

Published online by Cambridge University Press:  22 February 2012

Gianguido Baldinozzi
Affiliation:
SPMS, MFE, CNRS Ecole Centrale Paris, Châtenay-Malabry & DEN DMN SRMA, CEA, Gif-sur-Yvette, France.
Lionel Desgranges*
Affiliation:
SPMS, MFE, CNRS Ecole Centrale Paris, Châtenay-Malabry & DEN DMN SRMA, CEA, Gif-sur-Yvette, France.
David Simeone
Affiliation:
SPMS, MFE, CNRS Ecole Centrale Paris, Châtenay-Malabry & DEN DMN SRMA, CEA, Gif-sur-Yvette, France.
Dominique Gosset
Affiliation:
SPMS, MFE, CNRS Ecole Centrale Paris, Châtenay-Malabry & DEN DMN SRMA, CEA, Gif-sur-Yvette, France.
Laurence Luneville
Affiliation:
SPMS, MFE, CNRS Ecole Centrale Paris, Châtenay-Malabry & DEN DMN SRMA, CEA, Gif-sur-Yvette, France.
*
DEN, DEC, CEA, St Paul lez Durance, France.
Get access

Abstract

Oxides with fluorite (or fluorite related) structures form a large class of compounds with a high radiation tolerance, somewhat related to their peculiar ability to accommodate a variety of defects and to form nonstoichiometric compounds with a large homogeneity range. Structural modifications are generally observed when the departure from the ideal composition is large. We discuss these structural features using an approach based on the crystal symmetry analysis based on the phase transition mechanisms in compounds relevant for nuclear applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Active functional materials are those that can convert energy from one form to another (piezoelectric, magnetostrictive.) and in this case there is no compulsory need for a physical anomaly but only a large cross coupling effect.Google Scholar
2. Simeone, D., Baldinozzi, G., Gosset, D., Dutheil, M., Bulou, A., Hansen, T., Phys. Rev. B 67 064111 (2003).Google Scholar
3. Tsukuma, K., Ueda, K., Shimada, M., J. of the Amer. Ceram. Soc, 68 C4C5 (1985).Google Scholar
4. Guéneau, C., Baichi, M., Labroche, D., Chatillon, C., Sundman, B., J. Nucl. Mat. 304 161175 (2002).Google Scholar
5. Higgs, J.D., Thompson, W.T., Lewis, B.J., Vogel, S.C., J. Nucl. Mat. 366, 297305 (2007).Google Scholar
6. Geng, H. Y., Chen, Y., Kaneta, Y., Kinoshita, M., Appl. Phys. Lett. 93, 201903 (2008)Google Scholar
7. Dorado, B., Garcia, P., Carlot, G., Davoisne, C., Fraczkiewicz, M., Pasquet, B., Freyss, M., Valot, C., Baldinozzi, G., Simeone, D., Bertolus, M., Phys. Rev. B 83, 035126 (2011).Google Scholar
8. Gagliardi, L., Roos, B. O., Nature 433, 848851 (2005).Google Scholar
9. Desgranges, L., Baldinozzi, G., Ruello, P., Petot, C., J. Nucl. Mat. 420, 334337 (2012).Google Scholar
10. Ruello, P., Desgranges, L., Baldinozzi, G., Calvarin, G., Hansen, T., Petot-Ervas, G., Petot, C., J. Phys. Chem. Sol. 66 823831 (2005).Google Scholar
11. Bevan, D. J. M., Greis, O., Strähle, J., Acta Crystallogr. A 36, 889890 (1980).Google Scholar
12. Bevan, D. J. M., Lawton, S. E., Acta Crystallogr. B 42, 5558 (1986).Google Scholar
13. Cheetham, A. K., in Non-stoichiometric Oxides, ed. Toft Sorensen, O., (Academic, London, 1981) Chap. 8.Google Scholar
14. Allen, G. C., Tempest, P. A., Proc. Royal Soc. London A 406, 325344 (1986).Google Scholar
15. Baldinozzi, G., Desgranges, L., Rousseau, G., Mater. Res. Soc. Symp. Proc. 1215, 5560 (2010).Google Scholar
16. Willis, B. T. M., Acta Crystallogr. A 34, 8890 (1978).Google Scholar
17. Conradson, S. D., Manara, D., Wastin, F., Clark, D. L., Lander, G. H., Morales, L. A., Rebizant, J., Rondinella, V. V., Inorg Chem. 43, 69226935 (2004).Google Scholar
18. Desgranges, L., Baldinozzi, G., Simeone, D., Fischer, H.E. Inorg Chem. 50, 61466151 (2011).Google Scholar
19. Cooper, R.I. & Willis, B. T., Acta Crystallogr A 60, 322325 (2004).Google Scholar
20. Desgranges, L., Baldinozzi, G., Rousseau, G., Nièpce, J.C., Calvarin, G., Inorg Chem. 48, 75857592 (2009).Google Scholar
21. Matzke, Hj., Ronchi, C., Phil. Mag. 26, 1395 (1972)Google Scholar
22. Hide, B. G., Acta Crystallogr. A27, 617 (1971).Google Scholar
23. Aizu, K., Phys. Rev. B 2, 754772 (1970).Google Scholar
24. Toledano, P., Dimitriev, V., Reconstructive Phase Transitions: in crystals and quasicrystals. (World Scientific Publishing Co. Pte. Ltd., Singapore, 1996).Google Scholar
25. Ronchi, C., Wiss, T., J. Appl. Phys. 92, 5837 (2002).Google Scholar
26. Desgranges, L., Pasquet, B., Fraczkiewicz, M., Nucl. Instr. and Meth. in Phys. Res. B 266, 30183022 (2008).Google Scholar
27. Sickafus, K. E., Grimes, R. W., Valdez, J. A., Cleave, A., Tang, M., Ishimaru, M., Corish, S. M., Stanek, C. R., Uberuaga, B. P., Nature Mater. 6, 217223 (2007).Google Scholar