Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T07:22:56.540Z Has data issue: false hasContentIssue false

Structural Evolution of Nuclear Glasses under Forcing Conditions (Irradiation, Alteration)

Published online by Cambridge University Press:  01 February 2011

Georges Calas
Affiliation:
[email protected], University of Paris, Paris, France
Laurence Galoisy
Affiliation:
[email protected], University of Paris, Paris, France
Laurent Cormier
Affiliation:
[email protected], University of Paris, Paris, France
Jean Marc Delaye
Affiliation:
[email protected], CEA, Marcoule, France
Patrick Jollvet
Affiliation:
[email protected], CEA, Marcoule, France
Sylvain Peuget
Affiliation:
[email protected], CEA, Marcoule, France
Get access

Abstract

Assessing the long-term behavior of nuclear glass implies the prediction of their long-term performance, and more precisely of their evolution under irradiation and during interaction with water. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features observed under forcing conditions. Specific structural tools (EXAFS/XANES, Neutron/x-ray diffraction, solid state spectroscopic methods…) are correlated with numerical simulations to determine the local structure of glass and provide selective information on glass surface using total electron yield detection. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Molecular scale processes help in predicting the properties of new generations of nuclear glasses required by future production of nuclear energy. Under irradiation, various structural effects are observed, including coordination change, ion migration or disorder effects. These studies show that glasses with a simplified composition do not show the same behavior as more realistic glasses. Molecular dynamics (MD) simulations provide complementary information on elastic effects. Recent direct evidence for B-coordination change under external irradiation together with structural models derived from MD sheds light on the structural mechanisms at the origin of radiation-induced modifications of glass properties, emphasizing the importance of the thermal regime in the cascade core.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Grambow, B. Elements, 2 (2006) 357.Google Scholar
2 Frugier, P. Gin, S. Minet, Y. Chave, T. Bonin, B. Godon, N. Lartigue, J. E. Jollivet, P. Ayral, A. Windt, L. De, Santarini, G., J. Nucl Mater., 380 (2008) 8.Google Scholar
3 Weber, W. J. Ewing, R. C. Angell, C.A. Arnold, G.W. Cormack, A.N. Delaye, J.M. Griscom, D.L., Hobbs, L. W. Navrotsky, A. Price, D. L. Stoneham, A. M. Weinberg, M.C. J. Mater. Res., 12 (1997) 1946.Google Scholar
4 Peuget, S. Cachia, J.N. Jegou, C. Deschanels, X. Roudil, D. Broudic, V. Delaye, J. M. Bart, J.-M., J. Nucl. Mater., 354 (2006).Google Scholar
5 Calas, G. Cormier, L. Galoisy, L. Jollivet, P. C. R. Chim., 5 (2002) 831.Google Scholar
6 Neuville, D.R. Cormier, L. Massiot, D. Chem. Geol., 229 (2006) 173.Google Scholar
7 Cormier, L. Gaskell, P.H. Calas, G. and Soper, A. K. Phys. Rev. B 58 (1998) 11322.Google Scholar
8 Rossano, S. Balan, E. Morin, G. Bauer, J. P. Calas, G. Brouder, C. Phys. Chem. Minerals 26 (1999) 530.Google Scholar
9 Weigel, C. Cormier, L. Galoisy, L. Calas, G. Bowron, D. Beneu, B. Appl. Phys. Lett., 89 (2006) 141911.Google Scholar
10 Galoisy, L. Calas, G. Amer. Mineral., 76 (1991) 1777.Google Scholar
11 Grand, M. Le, Ramos, A. Calas, G. Galoisy, L. Ghaleb, D. Pacaud, F. J. Mater. Res., 15 (2000) 2015.Google Scholar
12 Weigel, C. Cormier, L. Calas, G. Galoisy, L. Bowron, D.T. J. Non-Cryst. Solids 354 (2008) 5378.Google Scholar
13 Calas, G. Grand, M. Le, Galoisy, L. Ghaleb, D. J. Nucl. Mater., 322 (2003) 15.Google Scholar
14 Majerus, O. Cormie, L. Calas, G. Beuneu, B. Phys. Rev. B 67 (2003) 024210.Google Scholar
15 Stebbins, J. F. Ellsworth, S. E. J. Amer. Ceram. Soc., 79 (1996) 2247.Google Scholar
16 Kroeker, S. Farnan, I. Schuller, S. Advocat, T. Mater. Res. Soc. Symp. Proc., 1124 (2009) Q0306.Google Scholar
17 Galoisy, L. Pélegrin, E., Arrio, M. A. Ildefonse, P. Calas, G. J. Am. Ceram. Soc., 82 (1999) 2219.Google Scholar
18 Ferlat, G. Cormier, L. Thibault, M. H. Galoisy, L. Calas, G. Delaye, J. M. Ghaleb, D.. Phys. Rev. B 73 (2006) 214207.Google Scholar
19 Jollivet, P. Auwer, C. Den, Simoni, E. J. Nucl. Mater., 301 (2002) 142.Google Scholar
20 Petit-Maire, D., Petiau, J. Calas, G. Jacquet-Francillon, N., Physica, 158 (1989) 56.Google Scholar
21 Cormier, L. Ghaleb, D. Delaye, J. M. Calas, G. Phys. Rev. B 61 (2000) 14495.Google Scholar
22 Greaves, G. N. Sen, S. Adv. Phys., 56 (2007) 1.Google Scholar
23 Pèlegrin, E., Calas, G. Ildefonse, P. Jollivet, P. Galoisy, L. J. Non-Cryst. Solids (accepted).Google Scholar
24 Combes, J.M. Manceau, A. Calas, G. Bottero, J.Y. Geochim. Cosmochim. Acta. 53 (1989) 583; T. Allard P. Ildefonse C. Beaucaire G. Calas Chem. Geol., 158 (1999) 81.Google Scholar
25 Muller, J.P. Manceau, A. Hazemann, J.L. Allard, T. Ildefonse, P. Calas, G. Amer. J. Sci., 295 (1995) 115.Google Scholar
26 Cailleteau, C. Angeli, F. Devreux, F. Gin, S. Jestin, J. Jollivet, P. Spalla, O. Nature Mater., 7 (2008) 978.Google Scholar
27 Sun, K. Wang, L. M. Ewing, R.C. Weber, W.J., Nucl. Instr. and Meth. in Phys. Res. B, 218 (2004) 368.Google Scholar
28 Boizot, B. Petite, G. Ghaleb, D. Pellerin, N. Fayon, F. Reynard, B. Calas, G. Nucl. Instr. and Meth. in Phys. Res. B166-167 (2000) 500.Google Scholar
29 Hess, N.J. Weber, W.J. Conradson, S.D. J. All. Compds 271–273 (1998) 240.Google Scholar
30 Bonfils, J. de, Peuget, S. Panczer, G. Ligny, D.de, Henry, S. Noel, P-Y, Chenet, A. Champagnon, B., J. Non-Cryst. Solids 356 (2010) 388.Google Scholar
31 Olivier, F.Y. Boizot, B. Ghaleb, D. Petite, G. J. Non-Cryst. Solids 351 (2005) 1061.Google Scholar
32 Peuget, S. Broudic, V. Jegou, C. Frugier, P. Roudil, D. Deschanels, X. Rabiller, H. Noel, P.Y. J. Nucl. Mater., 362 (2007) 474.Google Scholar
33 Wellman, D.M. Icenhower, J. P. Weber, W.J. J. Nucl. Mater., 340 (2005) 149.Google Scholar
34 Peuget, S. Noel, P.Y. Loubet, J.L. Pavan, S. Nivet, P. Chenet, A. Nucl. Instr. and Meth. in Phys. Res. B 246 (2006) 379.Google Scholar
35 Bureau, G. Delaye, J.M. Peuget, S. Calas, G. Nucl. Instr. and Meth. in Phys. Res. B 266 (2008) 2707.Google Scholar
36 Delaye, J.M. Ghaleb, D. Phys. Rev. B 61 (2000) 14481.Google Scholar
37 Bureau, G. Delaye, J.M. Peuget, S. Calas, G. Proc. Int. Conf. Atalante 2008, 1923 Mai 2008, Montpellier, France.Google Scholar