Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T23:26:46.087Z Has data issue: false hasContentIssue false

Structural Evolution of Cold Rolled Multi-Layers in the Al-Cu-Fe Ternary System

Published online by Cambridge University Press:  01 February 2011

J. S. Park
Affiliation:
Center for Noncrystalline Materials, Yonsei University, Seoul 120–749, Korea
E. Fleury
Affiliation:
Korea Institute of Science & Technology, Seoul 130–650, Korea
J. H. Kim
Affiliation:
Center for Noncrystalline Materials, Yonsei University, Seoul 120–749, Korea
H. J. Chang
Affiliation:
Center for Noncrystalline Materials, Yonsei University, Seoul 120–749, Korea
W. T. Kim
Affiliation:
Division of Applied Science, Chongju University, Chongju 360–764, Korea
D. H. Kim
Affiliation:
Center for Noncrystalline Materials, Yonsei University, Seoul 120–749, Korea
Get access

Abstract

Samples with a target composition of Al62.5Cu25Fe12.5 (at.%) have been produced from the repeated cold rolling and folding (R&F) process of Al, Cu and Fe elemental foils. Upon early increments of the R&F cycle, the mechanically-induced process led to the fragmentation of the initial foils, which resulted in the dispersion of elemental Fe layers through the refined Al and Cu layers. After 40 R&F cycles the Al2Cu phase was detected, while Fe did not contribute to the formation of compounds. Thermal analyses suggested that the formation and dissolution of the Al2Cu and Al7Cu2Fe phases are critical steps for the synthesis of the i-phase during post-R&F treatment. Annealing between 650° and 750°C enabled the formation of the stable i-phase and resulted in high values of the microhardness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dubois, J.M., in Suck, J.B., Schreiber, M. and Haussler, P. (Eds.), Quasicrystals: an Introduction to Structure, Physical Properties and Applications (Springer-Verlag, Berlin, Germany, 2002) p. 507.Google Scholar
2. Gayle, F.W., Shapiro, A.J., Bincaniello, F.S. and Boettinger, W.J.. Met. Trans. A 23 (1992), p. 2409.Google Scholar
3. Zhang, L. and Luck, R., Zeitschrift fur Metallkunde., 94 (2003) 2.Google Scholar
4. Grushko, B., Wittenberg, R. and Holland-Moroitz, D., J. Mater. Res. 11 (1996) 2177.Google Scholar
5. Lee, S.M., Jeon, H.J., Kim, B.H., Kim, W.T. and Kim, D.H., Mat. Sci. Eng. A, 304–306 (2001) 871.Google Scholar
6. Eckert, J., Schultz, L. and Urban, K., Acta Metallurgica and Materialia, 39 (7) (1991) 1377.Google Scholar
7. Kim, K.B., Kim, S.H., Kim, W.T., Kim, D.H., and Hong, K.T., Mat. Sci. Eng. A, 304–306 (2001) 822.Google Scholar
8. Grenet, T., Giroud, F., Joulaud, J.L. and Capitan, M., Phil. Mag A, 82 (2002) 2909.Google Scholar
9. Bordeaux, F., and Yavari, A.R., Zeitschrift fur Metallkunde, 81 (1990) 130.Google Scholar
10. Sieber, H., Park, J. S., Weissmüller, J. and Perepezko, J. H., Acta Mater., 49(7) (2001) 11391151.Google Scholar
11. Park, J. S., Fleury, E., Kim, J. H., Chang, H. J., Kim, W. T., Kim, D. H. and Yi, S., Phil. Mag. Letters, submitted to publication.Google Scholar
12. Massalski, T.B., Okamoto, H., in Subramanian, , and Kacprzak, , (eds.), L, 1990, Binary Alloy Phase Diagrams, (New York: ASM International). p. 141.Google Scholar
13. Lee, S.M., Kim, B.H., Kim, S.H., Fleury, E., Kim, W.T. and Kim, D.H., J. Mater. Sci. & Eng. A., 294–296 (2000) pp. 9398.Google Scholar