Published online by Cambridge University Press: 01 January 1993
Chemically pure (a-Si) and hydrogenated amorphous silicon (a-Si:H) are metasta- ble materials which are thermodynamically unstable with respect to crystalline silicon (c-Si). In both materials, however, partial thermal equilibria can be established between certain structural, configurational and electronic degrees of freedom. The present paper discusses experiments on both amorphous (a-) materials showing that two kinds of structural change can take place within random Si networks: structural relaxation and configurational equilibration. The first process can be observed in both materials indicating that it is supported by intrinsic degrees of freedom of the random Si networks. During these changes partial thermal equilibria between distorted and broken bonds are established via irreversible and relatively long-range relaxation processes. The second kind of change can only be observed in a-Si:H, indicating that it is H-related. The H-related degrees of freedom support reversible valence alternation reactions in which the local bonding configuration of the dopant and defect sites is changed and in which their charge states are altered. These latter interactions establish a strong coupling between the electronic system and the configurational degrees of freedom of the random Si networks. Formally, these latter changes bear strong similarity to the electrochemical processes that take place in liquid electrolytes.