Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:29:37.775Z Has data issue: false hasContentIssue false

Structural Dynamics of a Single Photoreceptor Protein Molecule Monitored With Surface-Enhanced Raman Scattering Substrates

Published online by Cambridge University Press:  01 February 2011

Kushagra Singhal
Affiliation:
[email protected], Oklahoma State University, Stillwater, Functional Nanomaterials Lab, Department of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK, 74078, United States, 405 744 3719
Karthik Bhatt
Affiliation:
[email protected], Oklahoma State University, Functional Nanomaterials Lab, Department of Mechanical and Aerospace Engineering, 218 Engineering North, Stillwater, OK, 74078, United States
Zhouyang Kang
Affiliation:
[email protected], Oklahoma State University, Department of Physics, 145 Physical Sciences, Stillwater, OK, 74078, United States
Wouter Hoff
Affiliation:
[email protected], Oklahoma State University, Department of Microbiology and Molecular Genetics, 307 Life Sciences East, Stillwater, OK, 74078, United States
Aihua Xie
Affiliation:
[email protected], Oklahoma State University, Department of Physics, 145 Physical Sciences, Stillwater, OK, 74078, United States
A. Kaan Kalkan
Affiliation:
[email protected], Oklahoma State University, Functional Nanomaterials Lab, Department of Mechanical and Aerospace Engineering, 218 Engineering North, Stillwater, OK, 74078, United States
Get access

Abstract

Photoactive yellow protein (PYP) is a small cytosolic photoreceptor that actuates the negative phototactic response in its host organism Halorhodospira halophila. It has an optical absorption maximum at 446 nm (blue light). We report an initial study of the photocycle of PYP at the single molecule level using “high enhancement factor” surface-enhanced Raman scattering (SERS)-active nanostructures with 514 nm laser excitation. The SERS-active “nanometal-on-semiconductor” structures are prepared employing a redox technique on thin germanium films, coated on glass slides. Single molecule spectra are observed in terms of sudden appearance of discernable Raman peaks with spectral fluctuations. The single molecule spectra capture protonation, photo-isomerization, and H-bond breaking - the steps that are instrumental in the photocycle of PYP. This is indicative of single PYP molecules diffusing to high-enhancement-factor SERS sites, and undergoing photo-cycle under 514 nm excitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meyer, T.E., Biochim. Biophys. Acta 806, 175 (1985).Google Scholar
2. Sprenger, W.W., Hoff, W.D., Armitage, J.P., Hellingwerf, K.J., J. Bacteriol. 175, 3096 (1993).Google Scholar
3. Hoff, W.D., Dux, P., Hard, K., Devreese, B., Nugteren-Roodzant, I.M., Crielaard, W., Boelens, R., Kaptein, R., Beeumen, J. Van, Hellingwerf, K.J., Biochemistry 33, 13959 (1994).Google Scholar
4. Baca, M., Borgstahl, G.E.O., Boissinot, M., Burke, P.M., Williams, D.R., Slater, K.A., Getzoff, E.D., Biochemistry 22, 14369 (1994).Google Scholar
5. Meyer, T.E., Yakali, E., Cusanovich, M.A., Tollin, G., Biochemistry 26, 418 (1987).Google Scholar
6. Hoff, W.D., Stokkum, I.H.M. Van, Ramesdonk, H.J. Van, Brederode, M.E. Van, Brouwer, A.M., Fitch, J.C., Meyer, T.E., Grondelle, R. Van, Hellingwerf, K.J., Biophys. J. 67, 1691 (1994b).Google Scholar
7. Kim, M., Mathies, R.A., Hoff, W.D., Hellingwerf, K.J., Biochemistry 34, 12669 (1995).Google Scholar
8. Xie, A., Hoff, W.D., Kroon, A.R., Hellingwerf, K.J., Biochemistry 35, 14671 (1996).Google Scholar
9. Borgstahl, G.E.O., Williams, D.R., Getzoff, E.D., Biochemistry 34, 6278 (1995).Google Scholar
10. Unno, M., Kumauchi, M., Sasaki, J., Tokunaga, F., Yamauchi, S., Biochemistry 41, 5668 (2002).Google Scholar
11. Xie, A., Kelemen, L., Hendriks, J., White, B.J., Hellingwerf, K.J., Hoff, W.D., Biochemistry 40, 1510 (2001).Google Scholar
12. Lee, B.C., Pandit, A., Croonquist, P.A., Hoff, W.D., Proc. Natl. Acad. Sci. USA 98, 9062 (2001).Google Scholar
13. Nie, S. and Emory, S.R., Science 275, 1102 (1997).Google Scholar
14. Hellingwerf, K.J., Hendriks, J., Gensch, T., Journal of Physical Chemistry A 107, 1082 (2003).Google Scholar
15. Cusanovich, M.A. and Meyer, T.E. Biochemistry 42, 4759 (2003).Google Scholar
16. Kalkan, A.K. and Fonash, S.J., J. Phys. Chem. B 109, 20779 (2005).Google Scholar
17. Unno, M., Kumauchi, M., Sasaki, J., Tokunaga, F., Yamauchi, S., J. Phys. Chem. B 107, 2837 (2003).Google Scholar
18. Unno, M., Kumauchi, M., Tokunaga, F., Yamauchi, S., J. Phys. Chem. B 111, 2719 (2007).Google Scholar
19. Pan, D., Phillip, A., Hoff, W.D., Mathies, R.A., Biophysical Journal 86, 2374 (2004).Google Scholar
20. Adesokan, A.A., Pan, D., Fredj, E., Mathies, R.A., Gerber, R.B., J. Am. Chem. Soc. 129, 4584 (2007).Google Scholar
21. Zhao, J. M., Lee, H., Nome, R.A., Majid, S., Scherer, N.F., Hoff, W.D., Proc. Natl. Acad. Sci. USA 103, 11561 (2006).Google Scholar