Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:10:06.195Z Has data issue: false hasContentIssue false

Structural Defects in Amorphous Silicon Probed by Sub-Picosecond Photocarrier Dynamics

Published online by Cambridge University Press:  26 February 2011

P.A. Stolk
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
S. Roorda
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
L. Calcagnile
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
W.C. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
H.B. Van Linden Van Den Heuvell
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
F.W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
Get access

Abstract

The dynamics of a photogenerated electron-hole plasma in pure amorphous silicon (a-Si) in different stages of structural relaxation have been studied with sub-picosecond resolution using pump-probe reflectivity measurements. For high plasma densities (> 1020/cm3) the plasma evolution is dominated by Auger recombination. At lower plasma densities (≈ 1018/cm3) the plasma decays exponentially with a time constant τ, suggesting that carrier trapping dominates in this regime. The decay time τ increases with the temperature at which the a-Si has been annealed, ranging from τ = 1 ps for as-implanted a-Si to τ=14 ps for a-Si annealed at 500 °C. This observation is consistent with a reduction in the number of defects in a-Si upon thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Polk, D.E. and Boudreaux, D.S., Phys. Rev. Lett. 31, 92 (1973).Google Scholar
2 Hubler, G.K., Donovan, E.P., Wang, K.W., and Spitzer, W.G., Soc. Photo-Optical Instr. Eng. Vol. 530, 222 (1985).Google Scholar
3 Tsu, R., Hemandez, J.G., and Pollak, F.H., Sol. State Comm. 54, 447 (1985).Google Scholar
4 Sinke, W.C., Roorda, S., and Saris, F.W., J. Mater. Res. 3, 1201 (1988).Google Scholar
5 Roorda, S., Doom, S., Sinke, W.C., Scholte, P.M.L.O., and Loenen, E. van, Phys. Rev. Lett. 62, 1880 (1989).Google Scholar
6 Roorda, S., Poate, J.M., Jacobson, D.C., Dennis, B.S., Dierker, S., Sinke, W.C., and Spaepen, F., Solid State Comm. 75, 197 (1990).Google Scholar
7 Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., and Spaepen, F., Mater. Res. Soc. Symp. Proc. 157, 709 (1989).Google Scholar
8 Polman, A., Jacobson, D.C., Coffa, S., Poate, J.M., Roorda, S., and Sinke, W.C., Appl. Phys. Lett. 57, 1230 (1990).Google Scholar
9 Coffa, S., Poate, J.M., Jacobson, D.C., and Polman, A., unpublished.Google Scholar
10 Martín-Moreno, L. and Vergds, J.A., Phys. Rev. B42, 7193 (1990).Google Scholar
11 Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Fuoss, P., Dierker, S., Dennis, B.S., and Spaepen, F., Mater. Res. Soc. Symp. Proc. 157, 683 (1989).Google Scholar
12 Wit, L. de, Roorda, S., Sinke, W.C., Berntsen, A.J.M., and Weg, W.F. van der, these proceedings.Google Scholar
13 Fork, R.L., Greene, B.I., and Shank, C.V., Appl. Phys. Lett. 38, 671 (1981).Google Scholar
14 Biersack, J.P. and Haggmark, L.J., Nucl. Instr. Meth. 174, 257 (1980).Google Scholar
15 Auston, D.H. and Shank, C.V., Phys. Rev. Lett. 32, 1120 (1974).Google Scholar
16 Doany, F.E., Grischkowsky, D., and Chi, C.-C., Appl. Phys. Lett. 50, 460 (1987).Google Scholar
17 Esser, A., Seibert, K., Kurz, H., Parsons, G.N., Wang, C., Davidson, B.N., Lucovsky, G., and Nemanich, R.J., Phys. Rev. B41, 2879 (1990).Google Scholar
18 Downer, M.C. and Shank, C.V., Phys. Rev. Lett. 56, 761 (1986).Google Scholar
19 Rehm, W. and Fischer, R., Phys. Stat. Sol. B94, 595 (1979).CrossRefGoogle Scholar
20 The calculation assumes me=mh=mo, where mo is the free electron mass.Google Scholar
21 Mourchid, A., Vanderhaghen, R., Hulin, D., and Fauchet, P.M., Phys. Rev. B42, 7667 (1990).CrossRefGoogle Scholar
22 Böer, K.W., Survey of Semiconductor Physics: Electrons and Other Particles in Bulk Semiconductors (Van Nostrand, New York, 1990), pp. 576618, and references therein.Google Scholar
23 Vardeny, Z., Strait, J., and Tauc, J., Appl. Phys. Lett. 42, 580 (1983).CrossRefGoogle Scholar
24 Johnson, A.M. in Semiconductors probed by Ultrafast Spectroscopy Vol. II, edited by Alfano, R.R. (Academic, Orlando, 1984), p. 3.Google Scholar
25 Aljishi, S., Smith, Z.E., and Wagner, S. in Amorphous Silicon and Related Materials Vol. B, edited by Fritzsche, H. (World Scientific, Singapore, 1989), p. 887.Google Scholar