Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:25:26.480Z Has data issue: false hasContentIssue false

Structural Defects in a Partially-Filled Skutterudite

Published online by Cambridge University Press:  01 February 2011

Jennifer S. Harper
Affiliation:
Department of Materials Science and Engineering, University of California Berkeley, California 94720–1760
Ronald Gronsky
Affiliation:
Department of Materials Science and Engineering, University of California Berkeley, California 94720–1760
Get access

Abstract

The partially filled skutterudite structure is a candidate thermoelectric material with the capacity for phonon scattering by the decoupled rattling of filling ions. In this transmission electron microscopy investigation of a 1.6%Ce, 1.6%Ni, 4.9%Ge, 22.8%Co, and 69.1%Sb alloy, the structure is found to be that expected of a partially-filled skutterudite, but with a varied assortment of structural defects. These defects are characterized and their effect on thermoelectric properties is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mahan, G., Sales, B., and Sharp, J., Physics Today, 42 (1997).Google Scholar
2 Kanatzidis, M. G., and DiSalvo, F. J., Naval Research Reviews 48, 14 (1996).Google Scholar
3 Caillat, T., Borshchevsky, A., and Fleurial, J. P., 13th International Conference on Thermowlectrics, 58 (1995).Google Scholar
4 Slack, G. A. and Tsoukala, V. G., Journal of Applied Physics 76, 1665 (1994).Google Scholar
5 Meisner, G. P., Torikachvili, M. S., Yang, K. N., Maple, M. B., and Guertin, R. P., Journal of Applied Physics 57, 3073 (1985).Google Scholar
6 Braun, D. J. and Jeitschko, W., Journal of the Less-Common Metals 76, 33 (1980)Google Scholar
7 Jeitschko, W. and Braun, D., Acta Crystallographica B33, 3401 (1977)Google Scholar
8 Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M., and Ehrlich, A. C., Journal of Applied Physics 79. 4002 (1996).Google Scholar
9 Kaiser, J. W. and Jeitschko, W., Journal Of Alloys and Compounds 291, 66 (1999).Google Scholar
10 Takizawa, H., Miura, K., Ito, M., Suzuki, T., and Endo, T., Journal of Alloys and Compounds 282, 79 (1999).Google Scholar
11 Sales, B. C., Chakoumakos, B. C., and Mandrus, D., Physical Review B 61, 2475 (2000).Google Scholar
12 Fleurial, J. P., Borshchevsky, A., Caillat, T., Morelli, D. T., and Meisner, G. P., 15th International Conference on Thermoelectrics, 91 (1996).Google Scholar
13 Morelli, D. T., Meisner, G. P., Chen, B., Hu, S., and Uher, C., Physical Review B 56, 7376 (1997).Google Scholar
14 Meisner, G. P., Morelli, D. T., Hu, S., Yang, J., and Uher, C., Physical Review Letters 80, 3551 (1998).Google Scholar
15 Nolas, G. S., Cohn, J. L., and Slack, G. A., Physical Review B 58, 164 (1998).Google Scholar
16 Ashby, M.F. and Brown, L.M., Phil. Mag. 8, 1083 and 1649 (1963).Google Scholar