Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T23:42:33.278Z Has data issue: false hasContentIssue false

Structural Characterization of Multilayers Using X-ray Diffraction

Published online by Cambridge University Press:  22 February 2011

B. M. Clemens
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205
J-A. Bain
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205
A. P. Payne
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205
T. C. Hufnagel
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205
S. M. Brennan
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94309
Get access

Abstract

Structural deviations from ideal layering of bulk constituents can have dramatic effects on the properties of multilayered materials. We discuss three examples of the use of x-ray diffraction in non-standard geometries to examine these effects. In Mo/Ni multilayers, we use asymmetric diffraction and grazing incidence x-ray scattering (GIXS) to deduce the strain and intermixing. We find that coherency stresses between the BCC Mo and FCC Ni planes play a major role. In the Fe/Cr system, we use rocking curves and asymmetric scans about the small angle superlattice lines to investigate the nature and extent of layer roughness. We find that conformai roughness dominates our best samples, while non-conformal roughness increases with sputter deposition pressure. In the Gd/Co system, we use in-situ GIXS to investigate amorphization reaction during deposition. We find a strong diffusional asymmetry and rapid reaction during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barbee, T.W., Clemens, B.M., Sinclair, R.W., Schuller, I.K., Guimpel, J., and Bruynseraede, Y.. MRS Bulletin, 15(2) (1990).Google Scholar
[2] Clemens, B. M.. J. Less. Comm. Met, 140, 5766 (1988).Google Scholar
[3] Khan, M. R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller., I. K. Phys. Rev. B 27, 7186 (1983).Google Scholar
[4] Bain, J.A., Chyung, L.J., Brennan, S.M., and Clemens, B.M., Phys. Rev. B, 44, 1184–92 (1991).Google Scholar
[5] Bennett, W. R., Leavitt, J. A. and Falco, C. M., Phys. Rev. B, 35, 4199 (1987).Google Scholar
[6] Kelly, D.M., Fullerton, E.E., Guimpel, J., Parker, F.T., Schuller, I.K., Bruynseraede, Y., Mat. Res. Soc. Proc, 231, (1991).Google Scholar
[7] Stearns, D.G., J. Appl. Phys., 65, 491506 (1989).Google Scholar
[8] Underwood, J.H. and Barbee, T.W.. Appl. Opt., 20, 3027 (1981).Google Scholar
[9] Vineyard, G.H., Phys. Rev. B, 26, 4146–59 (1982).Google Scholar
[10] Clemens, B.M. and Lesley, G.L., Phys. Rev. Lett, 61, 2356–9 (1988).Google Scholar
[11] Clemens, B. M. and Gay, J. G., Phys. Rev. B, 35, 9337 (1987).Google Scholar
[12] Fullerton, E.E., Schuller, I.K., Vanderstraeten, H., Bruynseraede, Y., Phys. Rev. B, (1991).Google Scholar
[13] Schuller, I.K., Grimsditch, M.. Mat. Res. Soc. Proc, This Volume, 1991.Google Scholar
[14] Yang, W. M. C, Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys., 48, 876 (1977).Google Scholar
[15] Jankowski, A. and Tsakalakos, T., J. Appl. Phys., 57, 1835 (1985).Google Scholar
[16] Baker, S.P. and Nix, W.D.. Mat. Res. Soc. Proc., 188, 289294 (1990).Google Scholar
[17] Nix, W.D., Met Trans. A, 20A, 2217–45 (1989).Google Scholar
[18] Matthews, J.W., in Matthews, J.W., editor, Epitaxial Growth, page 559. Academic Press, N.Y., 1975.Google Scholar
[19] Schuller, I. K. and Rahman, A., Phys. Rev. Lett, 50, 1377 (1983).Google Scholar
[20] Cammarata, R. C and Sieradzki, K., Phys. Rev. Lett, 62, 2005 (1989).Google Scholar
[21] Ruud, J.A., Witvroum, A, and Spaepen, F., Mat. Res. Soc. Proc, 209, (1991).Google Scholar
[22] Bauer, E. and van der Merwe, J. H., Phys. Rev. B, 33, 3657 (1986).Google Scholar
[23] Homma, H., Yang, K-Y., and Schuller, I.K., Phys. Rev. B, 36, 9435–8 (1987).Google Scholar
[24] Nieto-Vesperinas, M., Scattering and Diffraction in Physical Optics. Wiley, New York (1991).Google Scholar
[25] Savage, D.E., Kleiner, J., Schimke, N., Phang, Y.-H., Jankowski, T., Jacobs, J., Kariotis, R., and Legally, M.G., J. Appl. Phys., 69, 1411–24 (1991).Google Scholar
[26] Kortright, J.B., J. Appl. Phys., (1991).Google Scholar
[27] Yoneda, Y., Phys. Rev., 131, 20102013 (1963).Google Scholar
[28] Fuoss, P.H. and Brennan, S., Ann. Rev. Mater. Sci., 20, 365 (1990).Google Scholar
[29] Payne, A.P., Clemens, B.M., and Brennan, S.M., Rev. Sci. Instr., Accepted for publication, 1991.Google Scholar
[30] Spaepen, F., Mat. Sci. Eng., 97, 403–8 (1988).Google Scholar