Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:13:07.777Z Has data issue: false hasContentIssue false

Structural Characterization of Cu2+ Functional Centers In ‘Lead-Free’ KNN Piezoelectrics

Published online by Cambridge University Press:  31 January 2011

Ebru Erünal
Affiliation:
Rüdiger-A. Eichel
Affiliation:
[email protected], University of Freiburg, Institute of Physical Chemistry, Freiburg, Germany
Jerome Acker
Affiliation:
[email protected], University of Karlsruhe, Institute of Ceramics in Mechanical Engineering, Karlsruhe, Germany
Hans Kungl
Affiliation:
[email protected], University of Karlsruhe, Institute of Ceramics in Mechanical Engineering, Karlsruhe, Germany
Michael J. Hoffmann
Affiliation:
[email protected], University of Karlsruhe, Institute of Ceramics in Mechanical Engineering, Karlsruhe, Germany
Get access

Abstract

The alkali niobate ferroelectrics ((K0.5Na0.5)NbO3, KNN) are promising candidates as alternatives for PZT (Pb(ZrxTi(1-x))O3) ceramics in piezoelectric technologies. In order to obtain dense compounds with desirable properties, CuO has been used as sintering aid. In this work, the defect chemistry of Cu2+ doped KNN was investigated by means of electron paramagnetic resonance (EPR). Copper is found to be incorporated as acceptor-type centers on B-site in the perovskite structure and, due to charge compensation, two kinds of mutually compensating defect dipoles are formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rödel, J., Jo, W., Seifert, K. T. P., Anton, E.-M., Granzow, T., Damjanovic, D., J. Am. Ceram. Soc. 92 [6], 1153 (2009).Google Scholar
[2] Nordberg, G., Fowler, B. A., Nordberg, M., Friberg, L., Handbook on the Toxicology of Metals, Elsevier Science Publishers, New York, 117 (1986).Google Scholar
[3] Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics, Academic Press, New York, 115181 (1971).Google Scholar
[4] Shirane, G., Newnham, R., Pepinsky, R., Phys. Rev. 96, 581, (1954).Google Scholar
[5] Maeder, D.M., Damjanovic, D., Lead Free Ferroelectric Materials, in Setter, N. (ed.) Piezoelectric Materials in Devices, Lausanne, 389 (2002).Google Scholar
[6] Shrout, T.R., Zhang, S.J., J. Electroceram. 19, 111, (2007).Google Scholar
[7] Malic, B., Jenko, D., Bernard, J., Cilensek, J., Kosec, M., Mater. Res. Soc. Symp. Proc. 755, 83 (2003).Google Scholar
[8] Kleebe, H.J., Lauterbach, S., Silvestroni, L., Kungl, H., Hoffmann, M. J., Erdem, E., Eichel, R.-A., Appl. Phys. Lett. 94, 142901 (2009).Google Scholar
[9] Matsubara, M., Yamaguchi, T., Kikuta, K., Hirano, S., Jpn. J. Appl. Phys. 43, 7159 (2004).Google Scholar
[10] Lin, D., Kwok, K.W., Chan, H.L.W., J. Phys. D: Appl. Phys 41, 045401, (2008).Google Scholar
[11] Ahn, C.W., Karmarkar, M., Viehland, D., Kang, D.H., Bae, K.S., Priya, S., Ferroel. Lett. 35, 66 (2008).Google Scholar
[12] Lv, Y.G., Wang, C.L., Zhang, J.L., Zhao, M.L., Li, M.K., Wang, H.C., Mat. Lett. 62, 3425 (2008).Google Scholar
[13] Wada, S., Seike, A., Tsurumi, T., Jpn. J. Appl. Phys. 40, 5690, (2001).Google Scholar
[14] Nakamura, K., Tokiwa, T., Kawamura, Y., J. Appl. Phys. 91, 9272, (2002).Google Scholar
[15] Matsubara, M., Yamaguchi, T., Sakamoto, W., Kikuta, K., Yogo, T., Hirano, S., J. Am. Ceram. Soc. 88, 1190, (2005).Google Scholar
[16] Park, H.Y., Choi, J.Y., Choi, M.K., Cho, K.H., Nahm, S., J. Am. Ceram. Soc. 91, 2364, (2008).Google Scholar
[17] Li, E., Kakemoto, H., Hoshina, T., Tsurumi, T., Jpn. J. Appl. Phys. 47, 7702, (2008).Google Scholar
[18] Acker, J., Kungl, H., Hoffmann, M.J., J. Am. Ceram. Soc. 93[5], 1270 (2010).Google Scholar
[19] Stoll, S., Schweiger, A., J. Magn. Reson. 178, 42, (2006).Google Scholar
[21] Eichel, R.-A., J. Electroceram. 19, 9, (2007).Google Scholar
[22] Eichel, R.-A., J. Am. Ceram. Soc. 91, 691, (2008).Google Scholar
[20] Eichel, R.-A., Drahus, M. D., Jakes, P.; Erünal, E., Erdem, E., Parashar, S. K.S., Kungl, H., Hoffmann, M. J., Mol. Phys. 107 [19], 1981 (2009).Google Scholar
[23] Eichel, R.-A., Erünal, E., Drahus, M. D., Smyth, D. M., Tol, J. van, Acker, J., Kungl, H., Hoffmann, M. J., Phys. Chem. Chem. Phys. 11, 8698 (2009).Google Scholar
[24] Erunal, E., Eichel, R.-A., Körbel, S., Elsässer, C., Acker, J., Kungl, H., Hoffmann, M.J., Funct. Mater. Lett. 3 [1], 19 (2010).Google Scholar