Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:30:58.117Z Has data issue: false hasContentIssue false

Structural Characterization and Ionic Conductivity of Metastable Gd2(Ti0.65Zr0.35)2O7 Powders Prepared by Mechanical Milling

Published online by Cambridge University Press:  26 February 2011

Antonio F. Fuentes
Affiliation:
[email protected], Cinvestav, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Ramos Arizpe, Coahuila, 25900, Mexico
Karla J. Moreno
Affiliation:
[email protected], Cinvestav, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Ramos Arizpe, Coahuila, 25900, Mexico
Jacobo Santamaria
Affiliation:
[email protected], Facultad de Fisica, Universidad Complutense, Departamento de Fisica Aplicada III, Madrid, 28040, Spain
Carlos Leon
Affiliation:
[email protected], Facultad de Fisica, Universidad Complutense, Departamento de Fisica Aplicada III, Madrid, 28040, Spain
Ulises Amador
Affiliation:
[email protected], Facultad de Farmacia, Universidad San Pablo-CEU, Departamento de Quimica, Boadilla del Monte, Madrid, 28668, Spain
Get access

Abstract

We analyze in this work the influence of ordering on the oxygen ion dynamics in the ionic conductor Gd2(Ti0.65Zr0.35)2O7, prepared by mechanical milling. As-prepared powder phase presents a metastable anion deficient fluorite-type of structure below 800°C becoming a disordered pyrochlore above this temperature. Such phase transformation implies a significant increase in the ionic conductivity of this material as a result of a systematic decrease in the activation energy for the dc conductivity, from 1.23 to 0.78 eV. Electrical conductivity relaxation is well described by the Kohlrausch-Williams-Watts (KWW) stretched exponential function with the fractional exponent n decreasing systematically with increasing sintering temperature (increasing ordering) as a result of decreasing ion-ion interactions in better ordered samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chadwick, A. V., Nature (London) 408, 925 (2000).Google Scholar
2. Goodenough, J. B., Nature (London) 404, 821 (2000).Google Scholar
3. Ngai, K. L., J. Non-Cryst. Solids 203, 232 (1996).Google Scholar
4. Burggraaf, A. J., van Dijk, T., Verkerk, M. J., Solid State Ionics 5, 519 (1981).Google Scholar
5. Wuensch, B. J., Eberman, K. W., Heremans, C., Ku, E. M., Onnerud, P., Yeo, E. M. E., Haile, S. M., Stalick, J. K., Jorgensen, J. D., Solid State Ionics 129, 111 (2000).Google Scholar
6. Moon, P. K., Tuller, H. L., Solid State Ionics, Nazri, G., Huggins, R. A., Shriver, D. F., editors. Mater. Res. Soc. Proc. 135, 149 (1989).Google Scholar
7. Moreno, K. J., Mendoza-Suárez, G., Fuentes, A. F., García-Barriocanal, J., León, C., Santamaría, J., Phys. Rev. B. 71, 132301 (2005).Google Scholar
8. Moreno, K. J., Silva-Rodrigo, R., Fuentes, A. F., J. Alloy Compd. 390, 230 (2005).Google Scholar
9. Rodriguez-Carvajal, J., Physica B 19, 55 (1993).Google Scholar
10. Fuentes, A. F., Boulahya, K., Maczka, M., Hanuza, J., Amador, U., Solid State Sci. 7, 343 (2005).Google Scholar
11. Jonscher, A. K. in: Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1983.Google Scholar
12. Funke, K., J. Non-Cryst. Solids 172–174, 1215 (1994).Google Scholar
13. Ngai, K. L., Tsang, K. Y., Phys. Rev. E 60, 4511 (1999).Google Scholar
14. Ngai, K. L., León, C., Phys. Rev. B 60, 9396 (1999).Google Scholar
15. Kohlrausch, R., Pogg Ann. Physik 72, 353 (1847).Google Scholar
16. Ngai, K. L., León, C., Phys. Rev. B 66, 064308 (2002).Google Scholar