Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T15:12:06.215Z Has data issue: false hasContentIssue false

Structural and Opto-Electronic Properties of a-Si:H/a-SiNx:H Superlattices

Published online by Cambridge University Press:  01 February 2011

Stefan L. Luxembourg
Affiliation:
[email protected], Technical University Delft, ECTM-DIMES, Feldmannweg 17, Delft, 2628 CT, Netherlands
Frans D. Tichelaar
Affiliation:
[email protected], Delft University of Technology, Kavli Institute of NanoScience, Faculty of Applied Sciences, Lorentzweg 1, Delft, 2628 CJ, Netherlands
Peter Kúš
Affiliation:
[email protected], Comenius University, Department of Experimental Physics, Bratislava, SK-842 15, Slovakia
Miro Zeman
Affiliation:
[email protected], Delft University of Technology, DIMES, Feldmannweg 17, Delft, 2628 CT, Netherlands
Get access

Abstract

A series of multilayer structures consisting of alternating layers of hydrogenated amorphous silicon (a-Si:H) and amorphous silicon nitride (a-SiNx:H) was fabricated using plasma enhanced chemical vapor deposition. The overall thickness and a-Si:H-to-a-SiNx:H ratio was kept constant for the different multilayer samples fabricated. A blue shift of the optical bandgap was observed with decreasing a-Si:H well layer thickness. High-Resolution Transmission Electron Microscopy was used to estimate the abruptness of the layer-to-layer transitions. The thickness of the interface mixing layer for transitions from a-Si:H to a-SiNx:H was estimated to be 0.5 − 1 nm, while for the reverse transition a thickness of 2-2.5 nm was found. Results from Fourier Transform Infrared Spectroscopy support the found thickness range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Conibeer, G. Green, M. Corkish, R. Cho, Y. Cho, E.C. Jiang, C.W. Fangsuwannarak, T. Pink, E. Huang, Y. Puzzer, T. Trupke, T. Richards, B. Shalav, A. and Lin, K.l. Thin Solid Films, 511-512, 654 (2006)Google Scholar
2. Abeles, B. and Tiedje, T. Phys. Rev. Lett., 51, 2003 (1983)Google Scholar
3. Ibaraki, N. and Fritzsche, H. Phys. Rev. B, 30, 5791 (1984)Google Scholar
4. Beaudoin, M. Meunier, M. and Arsenault, C. J. Phys. Rev. B, 47, 2196 (1993)Google Scholar
5. Bernhard, N. and Bauer, G. H. Phys. Rev. B, 52, 8829 (1995)Google Scholar
6. Conde, J. P. Chu, V. Shen, D. S. and Wagner, S. J. Appl. Phys, 75, 1638 (1994)Google Scholar
7. Itoh, H. Matsubara, S. Muramatsu, S.i. Nakamaru, N. Shimida, T. and Shimotsu, T. Jap. J. Appl. Phys., 27, L24 (1988)Google Scholar
8. Bustarret, E. Bensouda, M. Habrard, M. C. Bruyère, J. C., Poulin, S. and Gujrathi, S. C. Phys. Rev. B, 38, 8171 (1988)Google Scholar
9. Roxlo, C. B. Abeles, B. and Persans, P. D. J. Vac. Sci. Technol. B, 4, 1430 (1986)Google Scholar
10. Demichelis, F. Giorgis, F. and Pirri, C. F. Phil. Mag. B, 74, 155 (1996)Google Scholar