Published online by Cambridge University Press: 21 February 2011
Results of investigations of optical waveguides formed by high energy helium implantation into lithium niobate codoped with 5 mol% MgO and 1 mol% Tm3+ or 1 mol% Er3+ are reported. A comparative study of structural and luminescence properties between implanted and untreated samples has been performed by means of Rutherford backscattering (RBS) combined with channeling and photoluminescence methods, respectively in order to investigate residual lattice damage and the incorporation of the optical active rare earths. For the case of Tm a full substitutional incorporation on the lithium site and a high crystal quality in both bulk and implanted waveguide material has been found. For Er doped lithium niobate the channeling results show a fraction of Er randomly incorporated or forming precipitates and a deterioration of the waveguide's lattice. The optical investigations show in both cases only a slight broadening of the emission lines of the rare earths in the waveguides compared to the bulk material.